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5710, Subtask 15.618, and was funded by the Defense Atomic Support Agency
(DASA).

Inclusive dates of research were October 1966 to October 1967. The report
was submitted 24 November 1957 by the Air Force Weapons Laboratory Project
Officer, Mr. Darrell Hicks (WLRT).

The author wishes to express his appreciation to Robert M. Pelzl and
Gail L. Houser for their help im preparing this report.

This technical report has becn reviewed and is approved.

DARRELL HICKS
Project Officer

»

Colonel, USAF Colonel, USAF
Chief, Theoretical Branch Chief, Research Division

TR
oo

Lo

ii




sty R

Fa
N ﬁbjx
“"{'2
AFWL~-TR-67-127 ;ﬁ;
Pk
ke
A %)
. ke
.
g ABSTRACT
2 (Distribution Limitation Statemeat No. 2)
,;\ The utility (accuracy, speed, etc.) of a hydrocode in solving the equaticns of
-3 hydrodypamics may be estimated by applying the hydrocode test problems described
4 in this report. Given the estimations of the utilities of a pair of hydrocodes,
- we may decide which 1s the preferred hydrocode to use. ‘The hydrocode test
B problems described in this report have solutions which are known exactly. Seven
A hydrocode test problems involving shocks, rarefactions, and interactions are
- inwvestigated and applied to a typical hydrocode, AFWL's PUFF.
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SECTION 1

LNTRODUCTION

1. 'THE HYDROCODE UTILLTY PROBLEM

dydrocedes are computer programs used to solve the equations of hydro-
dynamics. By "equations of hydrodynamics" w2 mesn the equations arising from

the conservation laws and thermodynamic laws. {See Appendix I for a detailed
discussion of these equations.)

In particular, we shall restrict the hydroccdes in this report to be digital
computer programs of finite difference schemes. We shall also restrict the
discussion in this report to one~{imensipnszl linear geometry hydrocodes. At
the end of this section we shsll give an example of a typical hydrocede. The
purpose of this report is to present the development of a method of determining

tbe atility (accuracy, speed, etc.) ¢f a hydrocode.

Hydrocode solurions to the equations of hydrodyramics usually differ from
the exact sclutions. If the hydrocode polutions couverge, this difference may
be reduced by refining rhe wesh of the Ffinite difference sicheme used in the
liydrocode. ‘Thus, 4% the hydrocode solutions converge, tne accuracy »% the

aydrocode solutions is directly related to the computational effori.

However, we have no proof of comvergence of these schemes except when the

% solution is asgumed smuoth between a priori known shock positions.* But the

B preblems of interest involve shocks whose poegitions are not 2 priori known.

+ priord

£ Therefore, in ‘the problems of interest, we have no proof of convergence.

%)

{ The accuracy of tee hydrocede zoiution is mot necessarily directly related
4%’

i A to the computacionai effort. That 1is, the mesh (space differences and time

7

%';%‘ differences) might bz refined and yet the accuracy might not be improved.

£ 538

%ﬁ? Moreover, 2vea if coavergence wera proved for a scheme, it still might not be

%2;; of any practical use because the conwyergence might be too slow. That is, the
e

i;f‘ computational efforr required might be too much for practicali purpeses.

g —

%EZ; XLax anG Keller, The Init3al and Mixed Imitial and Boundary Value Problem for

3
e

Yyperbolic Systems, Los Alamos Report LAMS-1205, 7951.
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For the hydrocode to ba useful, the error should be small and the computa~
tional effort must be within the capacity of the computer in relation to both
memory and computation time. We will measure the computational effort by the
running time required on the Air Force Weapons Laboratory's CDC 6600 computer.
It is unfortunate that t¢his running time also deperds somewhat on the other
programs which are being run in the 66u0 because of its parallel processing.

However, this was the only computing time number available.

When ore uses a hydrocode to predict some phenomenon, he would like to
know how accurate he can expect the hydrocode's prediction to be. That is, he
would like to have a number or numbers which indicate to him what the deviations
between the hydrocode numbers and the observed data will be. One place for
deviations to enter is between the mathematical model of the phenomenon and
the phenomenon itself. This report does not discuss that problem. (However,

Appendix I does investigate the mathematical hodel.)

The problem w2 are trying to deal with is the deviation between the mathe~ v
matical model (represented by the equations arising from the conservation laws
and thermodynamic laws) and the hydrocode model (that is, the computed approxi-
mation to the solution of the equations arising from the consexvation and
thermodynamic laws). Therefore, we are going to call the solution to the
mathematical model the “exact solution." We therefore want some number or
numbers that indicate the "distance" between the hydrocode solution and the
exact solution. The numbefs will be like the maximum deviation between the
exact pressure profile and the hydrocode's pressure profile, or the sum of the
squares of the pressure deviations, etc. (See Appendix III for dz:tails on the
error numbers.) These numbers will then give a measure of the utility of a

hydrocode for a certain type of problem.

Hence, we developed a series of hydrocode test problems which are represent-
ative of the basic types of flow encountered in hydredynamic problems and whose
solutions are knqyn exactly. By basic types of flow we mean flows including
shocks, rarefactions, etc. {(For details, see Section II.) Then we applied
the hydrocode test problems to a typical hydrocode to give an example of the -

procedure that we have developed to measure the utility of a hydrocode.

- e e = e e v B N P
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2, AN EXAMPLE OF A TYPICAL HYDROCODE

. As an example of the type of hydrscode that we are referring to, we shall

present a sketch of AFWL's PUFF hydrocode which is described in detail in
AFWL-TR-66-48.

PUFF is a modification of the hydrocode proposed by von Heumann and Richt-
myexr in their March 1950 Journal of Applied Physics paper. This paper intro-
duced the notion of artificial viscosity. The equations they arrived at from

the conservation laws, thermodynamic laws, and the introduction of an artificial

viscogity were the following:

Consider a one-dimensional fluid motion. Let x be
the Lagrangian coordinate, and X=X{x,t) be the Eulerian
coordinate. That is, X(x,t) gives the position, at
time t, of a fluid element that was initially at posi-
tion x. .

Let po(x) te the initial density, so that V and v,
given by

o ‘--;»Wréwmmh‘fr “
% Ay ke R ;

&3 et N A
Sl IS s o8 EX o A s

VG, 0) = (10, (9X/9%) @

and

;i v(x,t) = 3X/t, (23

et

are the specific volume and fluid velocity, respectively.

The equations of motion, of energy, and of continuity

are:
po(av/at) = (8/9x) (ptq), (3)
(3e/3t) + (p+q)(3V/3t) = O, 4

and
po(SV/at) = (9v/ox). (5)

In these equations, p = p{(x,t) is the ordinary (or
static) fluid pressure and € = e(x,t) 1s the internal
energy per unit mass. A counection between €,p,V is

. established by an equation of state, which will be
assuwwed, for the purpose of illustration, to have the
form
e = (pV)/(y-1) (6)

which holds, for example, in the case of a perfect gas.

|
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y is a constant >1,

It is supposed that ihe dissipative mechanism can be
represented by the additional term q in the pressure,
which is assumed to be negligibly small, except in the
neighborhood of the shock.

The original q (artificial viscosity) was

’ 2
- . poGAX v | 3V N
4 v 3t | at d
Using (5), it can also be written
( ) 9
_ ety 3u | au
1577 x| @)

where ¢ is a dimensionless constant near 1 and Ax is the interval length used
in the numerical integration of the hydrodynamic equations. PUFF's q is a
modification of this.

Now we will describe PUFF's difference scheme to solve the foregoing equa-

tions.

Let the points of a rectangular network with spacings Ax and At be denoted
by Xy th (2 = 0,1,2, ..., L3 n = 0,1,2, ... ). We shall also have occasion

to deal with intermediate points, having coordinates
z 1/2(x 4x ), /2 1/2(tn+1+tn).

To facilitate the writing, we introduce abbreviations such as

n n
Ver1/2 = "Q"ywl/z’t ) ete.

The difference equations with which PUFF approximates the differeantial
equations (1) through (8) are the following:

n-1/2 n n-1/2 n n-1/2

n+l/2 _ - -
) R~ V7 B V2 Vi B = VE RO
o At bx

e s © e m s e m o e e -~
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ie PUFF's difference approximation to

U _ _ 3(ptq)
Po 3t ox (10)
n*l b A
% pnr
At 3

is PUFF¥'s difference approrimation to

—a—-x- = v
t
ntl o ___p_°£x__.__.. (11)
fo=1/2 © To¥FL .ot
T . x
% 2-1

because

©
n
Al

Now let

Un+1/2 ( Un+l/z

AUl = . -V, 3

Then PUFF's q is

00 * Ay N, s 085, MG gl
Rt T Db S b S SRR LT e 0
Srdeiasvpdiiie e Ay

LS

nt+l + P
Pe-1/2 " Pa-1/2 ) (199
2 4

n+l/2
d9-1/2

= . 2 . . . .
(AU ¢z - ¢, cs) AU

o4
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: where Co = 1.8, Cl = 0.25, C8 = igothermal sound speed at time tn71/2 and
4
f position 2-1/2. That is,
i
: dp
: €2 = =
i
! 8 do € const.
!
; Then PUFF simultaneously solves
!
: n+l _ n n+1 nt+l/2 n n-1/2
; T Vi Y V2 A o Ve i VR VR VI
. At 2 p Ax
; 0
é (13)
; and
: 1l _ fn¥l nHl
Fo-1/2 P(sz-l/Z’ "2-1/2) (14)

(the equation of state).

The difference equation is the result of differencing

(13 i 3y
0=5c* () -5

which results from

%€ . prgy & ang 2V . 13T
0 ot + (P+q) at and ot 2 9x

" 152
N e g A ¥ S s A 0 h A AoV SR S 8 Al B G T AR, Bel A MRS (L AT A8 B e B A

PUFF's method of sclution is this: Suppose that all quantities are known

for superscript n or n-1/2 (ttis is referred to ao being at cycle n); compute

U .

U:+1/2 for each £ from (9), then compute X:+1 for each £ from {1); next compute
t n+l n+1/2 1oy .
: 02_1/2 for each £ frem (11), then compute 9_1/2 for each 2 from (12); next

compute egt}/z, Pziilz for each £ by simultaneously solving (13) and (14). At

this point, a1l variables have beeun advanced up to cycle ntl. Next, PUFF does
its time-step computation to compute the next At. The time~step computation

is based on a modification of the criterion developed by Courant, Friedrichs,

L — - — e W ———

i
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and Levy in their 1928 MATH. ANNALEN paper. The physical interpretation of
this criterion is that the time step should be restricted so that a sound
signal cannot travel across more than one zone in a time step. That is,

Cz Ae® S.sz’ for all ¢, where C: is the sound speed in the 2th zone at cycle
n, at" is the nth time step, and Axi is the width of the 2th zone at cycle n.

Thus, at™ is usually defined as

At 0 min ——

£ C

where

0<8<1

6 is called the CFL number., PUFF uses a modification of this (see AFWL-TR-
67-48). For more details about the CFL critericn, see Appendix IX
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SECTION II

DESCRIPTIONS, DERIVATIONS, AND DETAILS

To make this section easier to read, we include a discussion of the fcrmat
used in presenting the hydrocode test problems. Seven hydrocode test problems
are considered. The protlems discussed in this report are labeled SCTP for
Slab Code Test Problems. The "Slab" refers to the geometry, i.e., one-
dimensional lineaz.

The labeling is further medified to indicate which problem, i.e., SCTP-I,
SCTP-1I, ..., SCTP-VII. The consideration of each problem is arranged in the

fellowing way:

n. HYDROCODE TEST PROBLEM SCIP-n

a. Description of Problem

Here we give a graphical and verbal description of the problem.

b. Derivation of Solution

Under this heading the exact mathematical solution is derived.

c. Application as a Test Problem

Now we get down to the numerous details ard difficulties of
applying the problem to a hydrocode, that is, how one inputs
the initial and boundary values for various codes. The first
division in variety of codes is whether the code is Eulerian
or Lagrangian in its formulation of the hydrodynamics equa-

tions. Therefore, we introduce the following subdivisions.
(1) Eulerian Input

(a) Initial values

(b) Boundary values
{2) Lagrangian Input

(a) Initial values

(b) Boundary values

e o = e s — . —E B e P et

S A R e« NN s Tttt Al B e N X

e g e s 2o
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In the foregoing subdivisions we describe how the hydrocode test problems
may be introduced into either an Eulerian or a Lagrangian hydrocode. That is,

we give the specific processes for inputting the initial values and the
boundary values.

Up to this peint we have not specified any numbers for the initial
pressures, densities, etc. These numbers are iatroduced in the following
subdivision.

(3) Numerical values for SCIP-n

Here we give the initial and boundary value numbers which
are used for both Eulerian and Lagrangian hydrocodeé.
Also, we give the restlting numbers which occur in the

sdlution.

Next, we discuss what is to be expected from these problems when they are
applied as hydrocode test problems. This is done under the heading

(4) Comments on the Computer Solution
Under this heading we have two subdivisions:
(a) General comments

In this paragrapk, we give a discussion of what can
be said about the hydrocode test problems behavior
in general. That is, how long the solution is as
described without altering the boundary values,

what mistakes a Lagrangiap hydrocode will probably
make, what errors an Eulerian hydrocode will probably

commit, etc.

Lastly, as a final illustrative help to the reader who wishes to apply the
hydrocode test problems, we present an application of the test problems. We
apply the seven hydrocode test problems to the typical Lagrangian hydrocode
PUFF (described in the introduction). This is done in the last heading:

() PUFF comments

Here we present the error graphs and error tables
for PUFF to illustrate what we believe to be a
reasonsble way of describing the "distance"

between the PUFF solutions and the exact solutions.
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We did not illustrate the Eulerian input by applying the hydrocode test

problems tc am Eulerian ccde.

1. HYDROCODE TEST PROBLEM SCTP~-1

a. Description of Problem

This is the steady profile solution of a constant velocity piston

N

compressing the fluid ahead of it. By steady profile solution it is meant

v

that the fluid parameters from the piston face te the shock front are constant,

3 and also to the right of the shock front the fluid parameters are constant.
f Therefore, the velocity of the pisten and the velocity of the fluid between the
piston and the shock frent are the same.

*f Figure 1 attempts to explain the problem graphicalily.

]

i

E Piston Shock

A Left side Right side

\ /

;:' oy - p ? v

K R Pes 000 Yy &

{; $ gs A 1s the cross-

X P sectional area

g - of the pipe

3 Figure la. Pipe Plot for SCTP-I
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Left

of piston

o e S i it

Left side
congtant wave

-~

R

Right side
constsnt wave

Figure 1b. Eulerian Wave Plot for £CIP-I

The variables used will be

A

c

L

C

H

3]

i

1]

m

11}

Wl

n

cross-secticnal. axea of the pipe

sound sp:ed to the left of the shock
sound speed To the right of tbe ~hock
pressure to the left of the shock
pressure to the wight of the shock
density to the left of the 3hock

denrity to the right of the shock
specific volume te the left of the shock
epecific voluwe to the right of the shock
fluid velocity to the left of the sheck

piston velocity
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v, £ fluid velocity to the right of the shock

A z shock velocity

b. Derivation of Solucion

(1) <Censervation of Mass or the Equation of Continuity

Looking from the right side of the shock wave, the mass engulfed
in time At by the shock wave is

(vs-vr) gr ALt

Looking from the left side of the shock wave, the mass cawing through the
ghock wave in time At is

(vs-vz) p ¢ LAt

Let m be the mass per second per vnit area passing through the shock. Then in

time At, the mass mAAt will pass through the shock. Hence,

(vx—vz) p, =m = (vs-—vr) P, (1)
So,

v

s =:vs - m/pz and V.=V~ mlpr

Therefore,

1 1
vz - vr =i (-‘;—; - ‘g) = m(Vr-V'.‘.)

(2) Newton's Second Iaw or the Equationr of Moticn or Comsezrvation of
Momentum Applied to Mass Passing through the Shock Wave
Suppcse the mass mAAt passes through the shock wave in time at.
From F = d/dt (¥v) comes

(mAAt)vz - (mAAt)vr
At

F = lix
A0

~ - 4 n ke mmm n mvme am ce o meamr Fmm v nma Alh h hm e e A A oW e <

e ——— ——— - et T = ST, e g e N o ut
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2
“ SD,
) F = mA(v - )
\'2
* Also,
F= (P2~PI)A
Therefore,
P, -P_ = mlv -v ) {2:N2L)
2 T Ve 'y -
(3} Counservation of Epergy or Energy Balance Equztion

-

wave

AK = tne :hange in kinetic energy of the mass mAAt

{a) WVeork dome cn a mass passing thrcugh shock wave

N .

Recall that

The work dene on the mass mAAt entering the shock wave is (.PrA) (vrAt).
%he work doiie on the nmass wAAt exiting the shock wave is (PB,A) (ngt).

Therefore, the work donz on the mass mAAt as it passes through the shock wave

(szg - Prvr)AAL

AW = the work done on the mass mAAt per area A per time At.

{b) Kinetic energy change in a mass passing through the shock

The change in kinetic enczgy of the mass mAAt as it passes

through the shock wave is 1/2 mAAt (v%-—vi).

per area A per time At.

t
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- 2 1,2
AK = 1/2 m(vz vr)

(c) Internal energy chamge of a mass passing through the shock
wave )

The specific internal energy e is a function of the pressure
and specific volume e = e(P,V).

So the intermal energy of a gas with mass mAAt
is (maAt) e (P,V).

AL = the increase in the internal energy of the mass mAAt per area A per time At
as it passes through the shock wave in time At.

AL = m (e (Pz,vz) -e (Pr,vr))

(d) Energy accounting

The increase in the mass mAAt's internal energy plus the

increase in its kinetic energy is equal to the work done on it. Symbolically,

AAt (AT+AK) = (AW) AAt or AL + AK = AW or

- B lv2y2 )= - .
m (e (Pz,vg) e (Pr,\Vr))+ . (v2 vr) PV, - BV (3:CE)
(4) Equation of State

The equation of state used is that of the perfect or ideal gas

model cf standard air.

{y-1) e = PV = RT (4:EOS)

y £ the ratic of specific heats, It will be taken as 1.4 which is
approximately the value for standard air

e £ specific internal energy

)
i

L 4
pressure

<3
i

specific volume

at

R = gas content

T = temperature

14
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{5) The Rankine-Hugoniot Relation

By (2:N2L)

(quPr) (V£+Vf) =m (vz—vr) (v2+vr)
v,+v
w2 .2\ 2 - (....2‘__£
s (22) = (o2 ) 57)

* 80

By (1:CM) -

m = (vznvr) / (Vr-Vz)
By (4:E0S) '

e (P,V} = PV/(y-1)

Substituting these into (3:CE) yields

Ve Vr v¢+v£
oo nmas - - re -
v,V (ez Qr) + (Pz lr) 2 ) Povs = FrVr

or

PP
0=e, -~ e, (V£°Vr} (5:RH)

(6) The Shock Speed Relatilons

Recall that by (1:CM)
(vs-va) fo = (vs-vr) p. = m
By (2:N2L)
r £ )
Py = Ty = Ve
By (3:CE)

m 3 w2 2Y.
v-1 (P£v2 ﬂrJz) + 7 'z vr) szz

15
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E Eliminating m, Pys Vz, and PZ’ these equations vield
i
! .
[}
3 : = P+v~v) (v—v v‘”’—v"v-Pv +1/2(22
. y=-1 r s Vr) Pr \Va Yy vV, T rr vy vr) .
o3 f
‘;‘ H - — - D
g - {Pr + (Vs vr) Pr l"z vr)} Vo T *tVr
2 (%s7™x) =
é This reduces to
4 2 _ 1+ 3-y Ly o, l-y -2 - |
b Vs (2v2+2v)vs+(2 vtV v, - C 0
N k)
e o
.
2 The solution to this is
e -
B % ‘1
!
B ¢
g !
E 1 .
g | . Iy 3=y Ity o A R e
s \A 7 Yy + 7V, +'V/( 7 Yy + % v;) + Ck (6:88(v))
i
e
g
IR The plus sign is taken on the radical so that vg > o.
3 ; From (1:CM) and (2:N2L)
: Py =P o, (vs"vr) ("z"’r)
|
E i
3 :
| P,-P
B - =v v, -~vv ~vv, +v
A P 8 & -2 o r f r
7R Tr
iy «
25
s Therefore,
Pl .
é E 1
: p,-p
- -1 VvV =y -~y e f -+vv—v2\‘
p 2 s L L r 2 ;:»r s
i 16
1
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Substituting this into the Vo quadratic yields

s 2

o N —— s s 4 o bt s 3 e am e m o e e s om

P, -P
2_.3:;1.) B o T T | N 5
v ( vr vs 7 5 + vsvr vr +

or
14y Sg7F
2 _ 2 _22Y I _ ol o
Ve 2vrvS + v 7 o c
T
So,
?,-P
° v, =v_+ Ly 2 x + ¢
s 2 o T
T
So,
, 1 {1y =i
vs Vr +‘/[ﬁp ( 2 Pz + 7 Pr)
b
By (5:RH)

Substituting tais into (7:SS(P)) yields

2
- ZYPrVr

8 r (y+1) Vz - (y-1) Vr

17
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Notice this requires thac

(y+1) v, - (y-1) v, > 0

which requires that

-2
R
[l 1l
v
'Ol‘o
©

La}

Therefore, for y = 1.4, pzlpr < 6 is required.

{7) Adlitional relations
Suppose the right side values are specified and
(a) v, is specified
By (6:88(+)), vg igs determined.

By (1:CM) and (Z2:N2L)
Pz = Pr + (Vs_vr) pr (vz-vr)
By (1:CM)

v -V
8 T

Py E oo 0,
£ VTV, X
(b) P, ie specified.
By (7:S8s(®)), v is determined.

By (L:CM) and (2:N2L)

By (1:CM)

vV -V
g T

Py = T
zvsvzr

18

i o A e it

o




s e e By Mo -
— e e——— e T— Y g A S WA - o

’

AN~ g
. WM“N,WWMW~~.W.MW~* C—

AFWL-TR-67-127

(c) v, is specified.

. Recall (8:SS(V)) is

2yP_v2
rr
- - 4
s T (y+1) Vg (v-1) ‘r

In order for the radical to be defined, it is required that

8 y-1
1 Ve <V ¥

If this restriction is satisfied, then Vg is determined.

- By (1:C)

- vz = vs - V2 (vs-vr) pr

By (2:N2L)

c. Applicgtion as a Test Problem

(1) Eulerian Input

(2) Initial values

To the right of Xs, the initial shock position, define the
velocity to be v, = 0, the pressure to be Pr > 0, the density to be p. > 0.
From this, Ci = YPrvr is determined.

» Let vp = MCr for some M » 0. Now the shock velocity is
determined by (6:SS(v)),

RO el

1 . 4
v, = CM (I§—) 1+ \{1 t DT
\

19
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For 0 < X j_XS, the velocity is defined by Vo = Vo, the pressure is defined by l

P =P+ AN (2:N2L) and (1:CM) defines the density Py = vspr/(vs—vp). .

(b) Boundary values

At X = 0, hold the velocity at Vos the pressure at Pi' and

the density at Poe Notice that for an Eulerian code, this is as if the piston
vwere always to the left of U0 and the computer sclution were exact from the
piston to U.
(2) Lagrangian Input
(a) Initial values

The Lagrangian input is the same as the Eulerian input.

(b} Boundary values
The Lagrangian input is the same as the Eulerian input.

(¥otice that the interpretation of the boundary value is much more satisfactory

now because the pistor is always at x = 0.)

(3) Numerical values for SCTP-I
(a) scCTP-I-A
M =1, AX = 1 meter, Xs = 50 meters
P_ = 10* dynes/cm?
p. = 107° gm/cm3
v. =0

Right boundary at 300 meters. These values yield

v, & 1.18 x 105 cm/sec
Ve o 2.08 x 105 cm/sec

Py o 3.47 x 10* dynes/cm?

Vg ~ 4,36 x 105 cmd/gm
) -
A reasonable output recipe is to run the problem to 0.1 second with prints at
Tne 300th zone should remain inzctive so total energy .

0.01 second intervais.
sums will be taken out to there. With che CFL number set to 1, the first At

will be about 6.9 x 10™" sec. Afrer the first time step, the time steps should
all be about 3 x 10" sec. Therefore, it should take about 335 cycles for a

CFL number of 1.
20
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{b) scrp-I-B
v Same as A except M = 100. This yields
v, 1.18 x 107 cm/sec
P, = 1.68 x 108 dynes/cm?
V, = 1.67 x 105 cn¥/gm
sz 6.26 x 10° cm/sec
v, > 1.42 x 107 cm/sec
A reasonable output recipe is to run the protlem to 1073 sec with prints at
10 sec. With & CFL number of 1, the first time step will be =~ 1.6 x 10~5 sec.
After the first time step, the time steps should run about 2.7 x 10~% sec.
Thus, it should take about 375 cycles to run to 1073 sec if the CFL number is 1.
As in SCTP-I-A, the 300th Zone should remain inactive so total energy sums will
. be taken from zone 1 to zone 300,

(4) Comments on the Computer Solution
(a) General comments

If the hydrocode is solving this problem correctly, the
velocity of the shock will be about Ve The quantities to the left of the
shock should remain at Vos Pz, Pgr and the quantities to the right should be

Vr’ Pr’ pr.

The shock front should remain sharp and not smeared over too
many zones. The specific internal energy on the left should be PQ,VZ'I(Y—]'); on
the right, it should be Prvr/ (vy~1). The specific kinetic enmergy on the left
should be 1/2 v%; on the right, it should be 1/2 v%.

The specific total energy should be 1/2 yg + szzl(y*l) on
the laft and PrVr/(y-l) on the right. To check comservation of total energy,
sum (1/2 v% + PIVI/(y-l)) MI’ where MI is the mass of cthe Ith zone, from the
piston face to some fixed point on the right which remains undisturbed through-
out the problem (zone 300 for SCTP-I-A or SCTP-I-B). This value should
increase by Plvgt, where t is time, for a Lagrangian code. For & Eulerianm
code, take the above sum over I and subtract t v2(1/2 vi + ngg/(Y'l)) PE
because of the interpretation mentiouned in (1)(b). After this is subtracted
from the total energy sum, the remainder should increase by szﬁt. The reason
for the time step sequence as mentioned in (3)(a) is that if the CFL number is

21
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1, tken for the first time step oty = AX/CQ ~ 6.9 x 107"; but after one of the

zones on the vight has been compressed, it should be about 43.4 cm long; then

9 43.4 em o 3 x 107% sec
02 .

s

: The sheck speed is moving =2t about 2 x 10° cm/sec, so in the first time step
it moves about 140 cm, which will engulf the first zone to the right. After

g the first time step, the first zone on the vizht should be compressed te about
43.5% cm.

Care should be taken in determining the correct time anc¢
position of all quantities produced by the code being tested. For example, in
PUFF, the velocities are one half time step behind in time and the Jth values
of the pressures, densities, and internal energies are halfway between X(J-1)

. and X(J). Errors on the order of 5 or 10 percent can arise if these variables

are not plotted at vhe right time and place. The energy partition is cf

e interest because it Indicates whether or not the energy dissipatien rste

Feer

associated with entropy increase across a shock is correct. Im particular, if

e .

the code uges an artificial viscosity as a dissipation mechanism, the energy

partition can:%ndicate whether it introduces too much or too little dissipation,

e by PR AN

{(b) PUFF Comments

brledy

1. SCTP-i-A

ACCURACY: Overall accuracy was on the order of 1 percent

&
W T wn e K vk e e Wen MR W e weR e
N - e

o fmen

except for the region of the initial discontinuity zone and the zones whera the

R AV oy h e e o VTN
U Ty o~ S P Rn AR ACE TEA

shock trausition occurs. That is, P, V, v, e, and the shock speed were ail

within about 1 percent except at zome 52 (zone directly in front of the initial

RS
PR Y

S

ke
[N VRN

discontiruity) where e and V were about 13 percent high and in the shock transi-

v ———— { Pt o o = o

Eol tion zones where the P, V, v, e take about six zones to change from within 1

!
A

percent of iuie lefr etste to within 1 percent of the right state. To change

A

[
re from 10 percent of the left state to 10 percent of the righi state takeg about

TR

three zones. I believe that the e, V peak in zone 32 was caused by the conver-—

gL
- o
EaS A WL

AN sion of kinetic to internal energy by the artificial viscosity which was .
? : intensified here by the sharp jump at the initial shock wave position. After
. the shock had been rounded off a bit, the artificial viscosity term reduced .

and remained uniform for the balance of the problem. This increase in iaternal
energy combined with constant pressure produced a higher specific volume because

the specific volume is proportional to the irternal energy/pressure quotient.
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Bel 'nd the shock, there is a little rarefaction dip in

this dip
exceeds 1 percent but does nit reach 2 percent, and at later times it fades

density snd pressure which is trsveling to the left. At early times

away.

The ubove statements indicate that the Rankine-Hugoniot
relatiops are heing satisfled asyiptotically. PUFF's total energy, total
internal energy, and total kinetic energy errors (deviations from the exact
sclutions) are small as indicated in Table I, thus indicating approximate
conservation of erergy and corxect emcvgy partition. In particular, the {
(artificial viscosity) conversion of kivetic emergy to interpal energy was

operating at about the correct rate.

TIME: DUFF took 1035 cycles, giving it an "effective
CFL number" of 335/1033 = 0.32.
PUFF took 72 seconds CDC 66G$ central processor time to rum 1033 cycles on

PUFF's rezomw capability was not utilized.

thils problem.
2. SCIP-I-B

ACCURACY:

with the initial discontinuity and the later shock posivions.

Again, the only distivtions were assoclated
The internal
a2nergy peak in zone 52 was at sbout 12.7 x 1013 ergs/gm wi-ile it should have
been about 7.00 % 1013 ergs/gn. The pressure was correct iv zope 52 so there
was a corresponding peak in the specifie volume at zone 52. i“he rarefaction
ip in the pressure and demsity which is seen at early tiries is less than 3
percent. By cycle 1495, this rarefactior dip is down to 1 perceny or less.
The shock transition is again about six zones for 1 percent of the left to 1
percent of the right and about three zones for 10 percent to 10 percent.
Except for tne above mentioned distortions, the PUFF solution to SCTP-i-B has
at most about 1 percent error for all other zones. Again, the sum totzl energy,

sum internal energy, and sum kinetic energies are close as indicated by Table I.

TIME:
vumber of 375/1463 = 0.26.
time to rum 1463 cycles cn this problem.

PUFF took 1463 cycles, giving an elfective CFL
PUFF took 75 seconds CDC 6600 central processor

3. Discussion of the initial discontincity

In inputting a discentinuous velocity profile into PUFF,
there are several alternatives in selecting v {the value of the velocity at
the discontinuity). Graphica’ly, the exact picturz is this:

23
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n, m
LA T
. i :
. 1 i
1 ' §
g 1 1 =X
Xs-l xs xs+1

where m_ is the mass in the zone to the left of the discoatinuity and m is the
mass- of the zone to the right cf the discontinuity. Xs is the position cf the
disceatinuity, Xs_l is the adjacent zope boundary to the left, and xs+l is the
zoae boundary to the right.

Since PUFF uses a linear interpolatior on its velocities,

the PUFF profile will look like this when a valee v is given:

v
4
Vz_'r_
anln <_vm

L, o

LRGP T
(| Sy —» X .
X

s+l
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Some alternatives for v 2
. Set v_ to either .
(1) n [0 eithe Vg OT V_

z (2) Minimize the maximm deviation of PUFF's velocity

profile from the exact velocity profile. This leads to

yields
m n 4m
2 r

2 . v
mzvz-imrvr / m,v Hnrv m!' z-hn vr
vzn == a 4m + ™ +m +3 o $m

) X T 2

= 0, the A of (4) is bigger than the v, of (3) whick in turn is

Notice that if vr
< m“,

bigger than the EA of (2) when m, < m_. So we have, when v_= 0 and m,

@ )@
m

v_<v
m L

z m

Now the internal energy spike increases as one increases the upper index of

1 -~
va(li) (ler. vn(x‘) =v. and vﬂ(‘SJ = v’g}, but the rarefaction dip and the associated

hamp leading it decrease. In all subsequent shock iaputs in this Tepors, e

tv =v_.
sa . e
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Table I-a% T

PUFF ERROR TABLE FOR SCTP-I-A WITH Yn = Yy )

Froblem time = 0.1 sec PUFF cycle = 1033 .
Computer time = 72 sec Number of ac{ive zomes = 267
Position of
Sum Sqr. Frr. Max. Erz. Max. Err.
Fressure 0.0251 +0.339 Xs
Velocity 0.0423 +0.583 XS
Density 0.0229 +0.292 Xs
Sum Int. Energy Sum Kin, Energy Sum Tot. Energy )
EXACT 1.324 x 109 2.270 x 108 1.551 x 10°?
PUFF 1.324 x 10% 2,264 x 108 1.550 x 10° -
Table I-B
FUFF ERROR TABLE FOR SCTE-I~B WITK ?ﬁ“= v,
Problem time = 1,0 x 1073 gee PUFF cycle = 1463
Computer time = 75 sec Number of active zones = 198
Position of
Sum Sqr. Err. Max. Err. Max. Err.
Pressure 0.0486 +0.64%4 Xs
Velocity : 0.0764 +0. 856 X,
Density 0.0568 +0.577 XS
Sum Int, Energy Sum Rin. Energy Sum Tot. Energy .
EX4CT 3.095 x 1012 3.093 x 1012 6.588 x 1012
PUFF 3.098 x 1,2 3.087 x 10'2 6.185 x 1012 -

—

*See Appendix III for a discussion of the Error Tsbles.
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2. HYDROCODE TEST PROBLEM SCTP-II

a. Description of Problem

In this problem, a piston moving with constant velocity Vp<< 2 to the
left evacuates a pipe in which the gas was initially at rest. In o doing, a
ravefaction wave moving to the right is formed. See figures 2a through 2d for

a graphical description.

Left side Rarefaction Right side
constant wave wave constant wave
T R o™ (st T s s Vo, O P N s AN W,
Piston
neving Pz <P < Pr
to the Pz’ Vo 0y Pr, Vo P,
N v, = Vv
left L P v <v <y v, = 0
L - ='r
. =X. (0)- ¥t ;\ -
Rp (£)=K, (0) vyt X (=5 O3+ e+ B v )e x (e)=x 0)4c ¢

XP(t) moves to the left with velocity Vp < 0.

XR(t) may move right or left or be stationary depending upon whether its

velocity Cr + +1/2 Yp is positive, negative, or zero.

Xc(t) moves to the right with velocity Cr > 0.

Figure 2a. Pipe Plot for SCTP-II

b. Derivation of Equation

(1) The Eularian Equations

Consider the Eulerian formulation of a homentropic (see index for
definition) hydrodynamic process for an ideal gas (see Appenuix 1 for a

derivaticn of the following equations):

Equation of coniinuity:

+ vp, + pVy = 0

Equation of wmotion:
. 1 _
v, F vy + 5 PX =0

27
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Equation of state:

Since the process is homentropic,

and
¢? = 4ar l = 3P
do S dp
So,
P = dp

2 _ 2
x * @ Px ~ Cpx

Therefore, the equations form the homogeneous hyperbolic system:

o\ L /Y O\ /Py 0
H o =
c
Ve P Vy 0

The method of characteristics will be used to derive the solutionm.
(2) The Method of Characteristics
{(a) Canonical form
For convenience, introduce ¢ suc that do = Cde/p. For
Y
P =P (9-3\
oip ¥
o}

6 = 2C/{y-1) + const. So, define ¢ as 2C/{y-1). Then

°t vCe ox 0
+ -3
vt Cv > 0

28
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Let vZv+o, w=v-~-0. Then

Ve v+C 0 Vy {@
9. ¢ wv-¢ Yy \p

Notice that the matrix is pow in characteristic form. That is, its character-

istic values are on the diagonal and zerog are elsewhere.
(b) Characteristic curves

Consider the curves in the X,t plane which are solutions of

the ordinary differntial problems:
4
A+ daX
X (FO) = Xo and TR + C

or

-f - - ax~
X (to) Xo anda-é-—=v-c

Notice that

+
a_ (+ ) ay L.
ar ViE (B, Vede TV =0

and likewise,
d -
& alx (c),c) =0

v and o are called Riemann invariants because v is constant on the curve
(X+(t),t) ulidch is called a characteristic curve and 1ikewise, w is constant
on the characteristic curve (X"(t),t>. Therefore,
+ + +
v(X (t),t) = v(Xo,to)

and

w(X-(t),t) = w(X;,t;)

Hence, if v(xo’to)’ o(xo,to) are known for scme (Xo,t°§ the values of v+ ¢

. I
are known at all points along the curve (Xi{t),t). The iaitial and/or boundary
dara for the original partial differential problem car be used to determine

values of v and o at some (Xo,to). That is, the initial data specif:es

29
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A}

v(fo,t;) and o(Xo,to) for to = 0. We repeat that the curves (X+(t),t) and
(X (t),t) are called characteristic curves. The family of curves in the (X,t)
plane with slope v + C is designated C+ characteristics. Likewise, the family

of curves in the (X,t) plane with slope v - C is desiguated C_ chavacteristics.

Notice that on a C+ characteristic dv/dp = dv/dp + do/dp = 0 and do/dp = C/p

so dv/dp = - C/p. With this relation, we may define a mapping from c, charac~
teristics into curves in the (v,p) plame. Let the curve <X+(t),t with initisl
values (Xo,to) be mapped into the curve v(p),p) with initial values (vo,po)
where v, = v(Xogto), 0y = p(Xo,to) and dv/dp = - C/p. This family of curves

in the (v,p) plane is designated f:_ characteristics (because they are the
images of the C+ characteristics). Likewlse, the family of curves in the

(v,p) plane with slope C/p is designated [ characteristics (because they are
the images of the C_ characteristics).

The method of characteristics will now be applied to SCIP-II.
Remember that SCTP-II can be interpreted as a piston withdrawing from a pipe
containing a gas initially at rest. Let XP(t) be the position of the piston
at time t,XP(O) = 0, Let Vp be the velocity of the piston, Vp < 0. Now the
information that the piston is being removed travels back into the undisturbed
gas with the spead of sound of the resting gas, Cr' So, in the X,t plane a
wave plot looks like figure 2b. First C(Xp(t),t), the sound speed at the face
of the piston, will be determined by the method of characteristics. Notice
(in figure 2b) that the C_ characteristics have (Xo,to) in the undisturbed
region (therefore, v(?o,to)and o(xo,to) are known) and the C_ characteristics
intersect the piston path line. The C_ characteristics will intersect the
piston path line because a C_ characteristic will start out in the undisturbed
region with slope -Cr; then where the C_ characteristic enters the rarefaction
wave, its slope v - C becomes more negative than the fluid velocity as long as
¢ > 0. C will be positive if the piston is not withdrawn tco fast for .the
gas to follow (that is, if no vacuum is formed between the gas and the piston).
When no vacuum is formed, the gas will be in contact with the piston face and
there it will have the velocity ¥p of the piston. The{efore, the C_ charac-
teristics intersect the piston path. Hence, if (xo’to} is in the undisturbed
region {e.g., if t, = 0 and Xo > 0), v(?o,to) =0, o(XO,to) = 2Cr/(y-1), and

v_(Xo,to) - o(xo,co) = V(Xp(t),t) - o(XP(t),t). So, —zcr,!(y-l) = v, -ZC(XP(t:),t)/

{y-1). Therefore, C XP(t),t = y=1/2 v, + Cr'
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XC(t)=Crt
constait wave
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copstant wave

Figure 2b. Eulerian Wave Plot for SCTP-II
(c) Simple waves

Note that v - o is the same constant, O for the entire
rarefaction region. Such a region is called a C_ simple wave. Also, if v+ ¢
is the same constant in a region, then the region is called a C+ simple wave.
Since v - 0 = --or in this region, v=o0 - 0. 80V depends only on o. But o
depends only on C which depends only on p. Therefore, P, v, o, C depend only
on p. Notice that if ¢ ~ c. is substituted for v in

°t v _C ox 0
+ =
Ve Cuv % 0

then rthe one equatinn o + (o-or+C) oy = 0 results. Since C = y-1/2 o, this
equation is of the fomm g, + (ag+b) oy = 0 where a and b are constants. The

generai solution to equations of this type may be expressed implicitly as
a(x,e) = F(X - (ao(X,6) + b)t).
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So,

, .
o(X,t) = F(X - (o-0v+C)t) = FIX - (v+C)t) = F(% - (lwl c—aé)t)
T 1 <
F can be determined by the condition at the piston face. For t < 0,
U(Xp(t),t) =0 = F(—Crt)
Therefore, for & > 0,
F(E) = o_

For t > U,

U(XP(t),t) =0, =0 +~v? = F<%P(t) - (VP+CP)t)

If vp is constant, then XP(t) = th, 80 G, = F(-CPt). Therefore, for

. P
E <0, F(§) = o+ Vpe Summarizing,

orif£>0
) = |
or+vpif§<0

1
From t > 0 and from the formula for F(§) where § = X - (l§= o-o;)t, it follows
thatr

X >(I—“211« c—cr)t{:)X/t > C_

and

h il N bt
X<(2 oor)c@}{/t<cr+ 5 vp

2

Thefefore,
L
X=(2 0=0_ It 4=

+1
X?‘(z G-Or){]i A [X#(l;—lo-ur)t] ‘”"Cr-’—X/t-’-Cr""lT"p

32
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Hence.
Yt -
X/c<cr+ 7 vP==>o-or+vP
and
Yl 2.
c + > vP<X/t<C =¥ X /t4+0 e o
and

X/t > Cr =0 = Ur

Thus o(X,t) is completely defined. Now the relation between o and p is one
to one so p is completely defined. As mentioned previously, P, v, ¢ are all
functions of p, so P, v, ¢ are completely defined. Notice that op = O, + Vps
therefore, o, will ba pesitive if IVPI < 0. Since o, = 2/y-1 Cp, for the

piston not to leave the ges {i.e., mo vacuum) it is required that lvPi < Cr 2/y=2.
In the left side constant wave, the fluid velocity is v,. In the rarefaction

P

wave, the fluld velocity goes linearly from to 0. In the right side constaat

v
?

wave, the flulid velocivy is zero. See figure 2¢. Since there is a one-to-one
relation between velocity and density, all variables may be written in terms

of the velocity because by the -equation of state P is a function of p.

XP(t) = XP(O) + vpt

1

B = %@ + (o4 F e

_ Xc(t) x= xP(O) + Crt
For

Xp(r) <X < X(8)

v(X,t) = vp

33
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For
XR(t) X< X(,(t)
) x-—xc(t)
O R
For
X > xc(t)
vi{x,t) = 0
Then
- =1
c{X,t) Cr + 3 v{X,t)
2
X;t) = +1:_1..’£_(..X.:_£?. ¥
p(X; (R 8 5 ¢
R4
and
’ 2y
~ -1
-1 w(X, )\ Y
P(X,t) = Pr(l + 12—— : )
T
v
b
% xR Xe
o b
v = - IVPI

Figure 2c. Velocity Plot for SCTP-IX
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Or they could be writter as

2
P&} = p_ (9%25—) .
r -
and
2y
Rt = pr(—c-%r-tl) 7-1
r

The total energy TE at time zero from the piston face at XP(O) to a position X

Q
far enough to the right so that it is quiet (at rest, stationary) throughcut
the problem time is

(IXQ«XP(O)) ':%T = TE(0)

The total energy from the piston face XP(t)

to XQ at some later time t > 0 is
TE(t) = TE()) + PPth where P

P is the pressure at the piston and vp = -lvP] is
the velocity at the piston. The total kinetic energy TRE is initially zero
(t = 0). At later times,

X (e
(& > 0) TRECE) = (Xp(8) - X,(0)) 2/2 oy + f 1/2 p{)vA(R)a
XR(t)
e 0
5 d¥ /2 p(X)v? = s p (VIVZX' (v)dv
R Vp
2

- y-1
o oo )
T

and

2 .
s =5 if y=1.4
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XX, X X
X' (v) = oEvXR } ‘ﬁ c

P P .

So the kinetic energy fromXR to XC is

4 T VP
P 2
+ 30 g3 +-5~B"+-1£
6 7 8
vhere
B=YllP
2
2 c,

Then the total internal energy is the total emergy minus the total kimetic

energy.
. c. Application as a Test Probiam
(1) Eulerian Input
(@) Initial values

For 0 < X}_KP(G)

v = "IVPE

-1
,. _x x|
? ) Pr{ 2 Ct

1 ! "'l P -

For X > XP(O)

e e e e+ ——————— s~




DA kit Mot

Py

AN

TR S A raae,

T L L et I e e < menm o o

AFAL-TR-67-127

T
p= Qr
(b) Boundary values
For X= 19
v = -IVP!
2y
v=-1
P=7P S o § iZZ!
T 2 ¢
T
2

(2) Lagrangias inputr

(a) Imitjial values

For x > 0

v=20
P=p
T
p = Dr
(b) Boundary values
Forx =0
v(0,t) = -|v_|

X(0,t) = X(0,0) -lvplt

or, since XP(t) £ X(0,t), thenm

Xp(t) = X,(0) ~fv le

37




AFWL-TR-67-127

(3) Numerical Values for SCTP-II

(a)

SCTP-II-A

P
r

p_ = 107% gm/cmd

r
c2 =
r
lvpl = =/ ¢y+1)
AX = 100 cm
XE(G> = 100 meters

X, = 300 meters

Q

10% dynes/cm?

YPrVr = 1.4 x 10!0 cm?/sec?

A reasouable output recipe is to run for 0.1 second and print every 0.0l second.

This takes about

(b)

{c)

(d)

(e)

120 cycles for a CFL number of 1.

SCTP~17-B
Same as A except
SCTP-I1-C
Same az A except
SCTP-I1I-D
Same as A except
SCTP-II-E

Same ag A except

of withdrawing piston on the left.

free

i}
[}

ZCr/(y+l)

= ZCr/(Y-l)

4Cr/ (y-1)

boundary condition on the left in place

(4) Comments on the Computer Solution

(a)

General

If specific volume is used in a code instead of density, then

it caanot solve those problems where vacuums occur (C, D, and E) because the

gpecific voime becomes infinite.
p

Whereas, if density is used, the vacuum

rondit! n is expressed by the density going to zerc., Also, the Eulerian
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formulation cannot give the correct answers because in the equation of wmotion

the density (as a fun on of time) is used as a divisor. (In Lagrangian

formulation it is the .nitial density which is used as a divisor.) The mathe-

matical solution to C, D, and E is the same. However, it cannot be expected
that the computer solutions will be the same. Notice that in C, the left
boundary of tpe gas 1s forced to move at the correct escape velocity. In D,

the left boundary ol the gas is constrained to move too fast to the left. In

E, the code is allowcd to calculate what the 2scape velocity should be. Because

the masses of the zones of the £luid do not go tc zero at the left boundary,

the escape velocity that the code computes will be too low. That is, in the

mathematical solution, the fluid starts moving with the escape velocity inmstantly

upon its release. For a nouzero mass of fluid to jump from zero velocity to a
congtant nonzero velccity requires an infinite force. The mathematical con-
tinuur medel is nost, however, predicting such a thing. The centinuum model is
requiring that an "infinitesimal mass" start moving with a constant velocity
and 1s thus not requiring an infin..e force., To state this precisely, let Xy
be the label of the gas point, to the left of which is a vacuum, i.e.,

X(xz,t) = XR(t)o Let X, be the label of the gas point, which at time t is at
the boundary of the undisturbed gas and the gas which has started moving toward
the vacuum, i.e., X(xr,t) = Xc(t). Let xq be the label of some fixed gas point
such that in the time interval of interest [0,T], T > 0, the gas point labeled
xq is quiet or undistur'ed, i.e., x_ > X, for 0 <t < T (xr is a function of
time), e.g., let X(xq,t) » XQ’ Now the force on the left boundary of the gas
at time zero is the negative (the force is directed to the left) of the initial
pressure P of the gas times the cross-sectional area of the pipe (which is a
unit area) and this is equal to the time rate of change of the momentum of the
gas at time zero. Expressed symbolically, this is

X(x ,t)

q
2elmd | SO V&,

)

)

t+0 . )
£>0 A(xv,t

’

at
where f\X(x,t),t) £ f(x,t), or by a change of variables in the integral, we have
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g

1
~P = lim %E p(x,0) vix,t)dx
t->0

t>0 R

RGw™ N

(This can be further reduced to

C t
r
S v(x,t)dx
~P = plim 0 T
t+0
>0

by dafining X, = 0.) 8o thaé, although the time derivative of v at X, and time
zero is not defined, the time derivative of the momentum is defined and finite.
So in the mathematical continuum model, the jumping of the left hand boundary
to a nonzero constant velocity at time zero does not require an infinite force.
However, in the discrete model, the finite zoning produces a positive mass for
the left boundary so that it cannot jump from a zero to a nonzero constant
velocity by the application of a finite force. The finite force used in a
code should be just the negative of the initial pressure at the left hand
boundary. Then the acceleration of the left boundary is -P divided by the mass
associated by the code with the left zone boundary (which, for example, in PUFF,
ig 1/2 the left zone mass). In C and D, there will he a couplz of compensating
e:rcrs influencing the total emergy computation. An error that will tend to
reduce the total energy is caused by the fact that the pressure at the left
zone boundary PP will not be zero; therefore, the work done on the gas at the
left boundary, PPth, will be negative. This causes an internal energy decrease
by the first law of tnermodynamics. An error that will tend to increase the
tota. kinetic energy and, therefore, the tocal energy is the numerical integra-
tion of the kinetic enexgy. The typical cole’s rimerical integrat%on of

X141

1/2 g o (X) v2(X)ex

Xt

will yield too large a value for the kinetic energy because this will be approxi-

mated by something like
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X1

1/2 VZ(XI+1/2) s p{X)dx

e

‘AI
where

X %

Xppje s —5—

This approximation is too large because of the characteristics of the-particular
p and v encountered in this problem. This error affects both € and D. A
further erroneous increase that &srlses in D is caused by the left boundary's
overly high velocity. Thus, the kinetic energy of the left zone is erroneously
increased; therefore, the errors affect the energy partition by erroneously
increaging the kinetic and decreasing the interal energy. The total energy

may either Increase or decrease, depending on which error dominates. Also,

the discrete models will not allow the density to go to zero at the piston face
because the left zone started with a finite mass and is just being stretched
out as the problem progresses. Other points of Interest in the contintum
solutions which should be gpproximated by the discrete solutions are these:

In A, XR(t) moves to the right with velocity Cr/2. In B, XR(t) is statlonary.
inC, D, E, Xr(t) moves to the left with velocity —2Cr/(y~l) and XR(t) marks
the boundary between vacuum and gas., The gas can just keep up with the piston
in C, {.e., XP - XR, and at the piston face, the values of the pressure and
dencity are zero. In D, the piston leaves the gas behind with a vacuum between

the piston at XP and the gas fromt at X The gas front can move intc a vacuum

with, at most, the velociry —2Cr/(y—1),Rwhich is known as the escape velocity.
So, in C, D; E, XR(t) » XP(O) - 2Crt/(y-1). The total energy from the piston
to an undisturbed point XQ on the right increases (or decreases) by PPth
where PP and vp are the pressure and velocity at the piston face. 1In A, B,

PP >0, but in €, D, 7, ??

but in C, D, E, it should remain constant from start to finish.

= 0, so in A, B, the total erergy should decrease,

(b) PUFF comments

1. SCIP-IT-A

Tha typical PUFF profiles in velocity, pressure, and

density deviated from the exact solution in the manner described in figure 2d.
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Pressure
density velocity

’Ff
P
,
EXACT
PUFF
¥/
_ P
<
1 ] 1
! { T =X
Xy Xq Xg

Figure 2d. PUFF SCI -II Error Graph

Reading figure 2d from right to left, we first see an underround at XC, then
an overround followed by an undershoot at XR. At time 0.1 {170 PUFF cycles)
second, the velocity deviations at the undershoot and the underround are both
about 3 percent (the base for percertages was the piston velocity). If we
take the initial pressure and density as bases for the percentage deviation in
the pressare and density, respectively, then we get about 2 percent as the
maximum erroer for the pressure and density. The total energy : mputations
ylelded the following:

XQ was chosen 200 meters to the right of XP(O). This
yielded a total internal energy at time zero of 5 x 108 ergs. Since the
velocity and, therefore, the total energy is zero at time zero, the initial
total energy is the same as the initial internal energy. After 170 cycles,
PUFF reached the problem time 0.1 sec and the energy deviations are presented
in table 1¥-A. Refer to the energy numbers in table II-A. These numbers are
X108 ergs.

PUFF took 31 secunds central processor time on the CDC
6600 and 170 cycles to run this pyoblem to the problem time of 0.1 second. With
a CFL number of 1, it would bave taken 120 cyclies, sc that PUFF's effective
CFL 4s 120/170 ~ 0.7 on this problem.
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2. SCTP-II-B

See figure 2d again for the typical PUFF profiles. The
results on percentage wnderround and undershoot are about the same as in SCTP-

1I-A. The total energy computations yield the following:

XQ was again chosen 200 meters to t he right of XP(O);
the initial total internal and total energy, therefore, are 5 x 108 ergs.

After 170 cycles, PUFF resches the problem time 0.1 second and table 1I-B
displays the energy deviations.

PUFF took 19 seconds CDC 6600 central processor time on
this problem. Again, PUFF's effective CFL is 120/170 ~ 0.7 on this problem.

3. SCIP-1I-C
See table II-C for the error numbers.

This took PUFF 170 cycles and 21 seconds CDC 6600 computes
time to run to the problem time of 0.1 cecond. Thus, the effective CFL number
is 120/170 ~ 0.7,

4. SCTP-II-D
See table II-D for the error numbhers.

This problem took PUFF 170 cycles and 30 seconds CDC
6600 computer time to run to the problem time of 0.. second. The efrective
CFL number is 120/170 ~ 0.7.

5. SCIP-II-E

As discussed earlier, the gas front at the frec boundary
of the gas in a finite differencc solution wiil nut move instantly vith the
escape velocity because the left zone has a nonzere mass. This causas a
"truncation of the profile." That is, the graphs appear about the same, but
they are not extended as far to the left as the exact solution. See table II-E

for the error numbers.

PUFF took 170 cycles and 29 seconds CDC computer time to
run to 0.1 second. Thus, effective CFL number is 120/170 ~ 0.7.
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Table II-A

PUFF ERROR TABLE FOR SCTP-II-A

Problem time = 0.1 gec PUFF cycle = 170
Computer time = 31 sec Number ¢f active zones = 134
Position of
Sum Sqr. Err. Max. Err. Max. Err.
Presgsure 0.0032 «0.0136 XC
Velocity 0.0076 +0.0248 XR
Density 0.0025 -0.0097 XC

Sum Int. Energy Sum Kin. Energy Sum Tot. Energy

EXACT 4.629 x 108 1.027 x 107 4,732 x 108
PUFF 4.629 x 108 1.025 x 197 4,731 x 108
Table II-B

PUFF ERROR TABLE FOR SCTP-II-B

Problem time = 0.1 sec PUFF cycle = 170
Computer time = 13 sec Number of active zones = 134
Position of

Sum Sqr. Err. Max. Err, Max. Err.
Pressure 0.0032 -0.0146 Xc
Velocity 0.0048 -0,0178 XR
Density 0.0027 -0.0104 XC

Sum Int. Energy Sum_Kin. Energy Sum Tot. Energy

EXACT 4,432 x 108 2,923 x 107 4,725 x 108
PUFF 4,431 x 108 2.920 x 107 4,723 x 16°
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Table 1I-C
PUFF ERROR TABLE FOR SCTP~II~C
Problem time = 0.1 sec PUFF cycle = 170
Computer time = 21 gec Number of active zones = 135
Position of
Sum Sqr, Err. Max. Err, Max. Err.

Pressure 0.0036 -~0.0157 XC
Yelocity 0.0006 -0.0022 XC
Density 0.0027 -0.0112 Xe

Sum Int. Energy Sum ¥Xin. Enecyy Sum Tot. Energy
EXACT 4,260 x 108 7.395 x 107 5.000 x 108
PUFF 4.249 x 108 8.045 x 107 5.053 x 108

Table II-D
PUFF ERROR TABLE FOR 5CTP-II-D
Problem time 9.1 sec PUFF cycle = 170
Computer time = 30 sec Number of active zones = 135
Position of
Sum Sqr. Err. Max. Err. Max. Err.

Pressure 0.0038 ~0.0158 XC
Velocity 0.0007 -0.0023 XC
Density 0.0028 -0.€113 XC

Sum Int. Energy Sum Kin. Energv Sum Tot. Enerpy
EXACT 4.260 x 108 7.395 x 197 5.000 x 108
PUFF 4.245 x 108 9.919 x 107 5.237 » 108
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Table II-E
PUFF ERRCR TABLE FGR SCTP-II-E

Problem time = 0.1 sec PUFF cvcle = 170

Computer time = 29 gec Humber of active zones

= 134

Position of

Sum Sqr. Err. Max. Err. Max. Err.
Pressure 0.0025 -0.90140 XC
Velocity 0.0006 ~0.0048 free boundary
Density 0.001¢ ~0.90160 s

Sum Int. Energy Sum Kin. Energy Sum Tot, Energy
EXACT 4.260 x 198 7.295 x 107 5.000 x 108
PUFF 4.261 x 10% 7.374 x 107 4.998 x 108
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3. HYDROCODE TEST PROBLEM SCTP-1II

a. Description of Problem

In this problem, a piston proceeds with a constant acceleration into a
gas initially at rest (by "gas initially at rest” is meant that the initial
conditions are: velocity is zero; density, pressure and all other fluid
parameters are constant). This forms what is called 2 compression wave. At
time ts = ZCr/a(y+1), a shock wave is formed (tS = time of shock formation,

Cr £ sound speed of the gas at rest, & = acceleration of the piston). Until
time t_, the variables are continuous and the solution is easily found.* More-
over, except for one peint (the front of the compression wave), the variables
are smooth prior to o Figure 3 attempts s graphical represextation and
description of the problem. As shown in figure 3b, the compression wave front
up to time t, is Xc(t) =c.t. After that time, the compression wave front is

a shock, i.e., there is a discon%inuity in pressure, density, velocity, etc.

Velocity = v, = 0
s ¢t rest Density = 2, const.,
7% Compression wave as at res Pressure = PL = const.
r
Sound spced = Cr = const.
Lv =at LeC
P T
2 .
XP = 1/2 at XC = CrL
Piston face Compression wave front

Figure 3a. Pipe Plot for SCTP-III

#See K. O. Friedrichs' paper in 1948 C.P.A.M., page 211, for an investigation
of the zolufion after shock formatiom.
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nad's]
n

7 XP(t) = 1/2 at?

Xc(t)

Shock path

Shock forms here

!

Figure 3b., Eulerian Wave Plot fer SCIP-IIL

b. Derivation of Solution

We present here the solution for the preshock region. The preshock
region is the set of all points {X,t) such that 0 < t 2t i.e., the set of
points in the X,t plane below the line t = ts-and above the iine t = 0. This
derivation depends on three key points. First key: there is a one-to-omne
relation between the density and the velocity and the pressure of the fluid.
Second key: the values of the density, pressure, and velocity are known at
the piston face. Third key: the density surface may be described in terms
of its level lines in the X,t plane.

Now we will establish the first key. In the preshock region, v - o =
V- @, % 0. This is because the A_ characteristics (d-/dt = v - c) extend
from thke t = 0 line, where v = v, = 0 and ¢ = s ianto th: preshock region,
and, of course, v - G is constant on A_ characteristics. Therefore, the pre-
shock region is a A_ simple wave, i.e., v -+ o is the same constant in the
entiic region. Aud the part of the simple wave between XP(t) and Xc(t) is a
compression wave (Xp(t) is piston facz position, Xc(t) is sound signal fromt}.
Now, for 0 < t < t, v(p) = alp} - G, op) = 2e(p)/¥-1, c?(p) = dP/dp (o),
clp) > 0, ?/p) ksy, k = Pr/er. This establishes the one-to-~one relations

IA
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mentioned in the first key point. Now we will establish the second key. The

2~

is V

velocity at the piston = at. 8o, o(p) = 0, + at at the piston 2u.e.
Then utilizing the relations between ¢ and c aﬁd ? and o,
established. So, at the point (XP(t),t),

density, pressure, and velocity.,

the second w2y is

i.e., the piston face, we know the
By the first kev, if we knew p(X,t) four all
values of X and t, we would know the complete solution.
know ¢(1/2 at?,t).

surface in terms of its level lines.

By the second key, we
The third key suggests that we represent the density
Therefcre, we investigate the level
linas of the density surface. ‘Chat is, we will Investigate the paths in the
x,t plane on which the density is constant. To be precise, we should denote
points on this path by ‘X( ;t.) t} such that for 0 < t < t o X(p ) tl=o.
That is, X 1is defined to be a funcriom of two variables, dens1ty and time. Or,
as some phrase it, X is a one-parameter (density) family of functions of one
variable (time).
So, ¢ X(Do;
tation procedure is
in the range of the function 0, find numbers X(po),t(po) such that p(X(p ) t(p ))

Let us denote Lty (Xo,to) one point such that p(Xo,to) = Py
t),t = p(Xo,to) =P, for 0 < t :_cs. Now the level line represen-
for all numbers, Py

composed of two parts. First part:

= Pye Second paxt: on a level line,
O=§£'—z=° o
dt X dt t
80
&
dt Py
[ p=p,
Therefore,
t
Y
X = XO - § ;: dt
X
to 0—90
Then let Xo = X(p0 to = t(pc). Then we solve for °, and this gives us

po(X,t) which is the representation of the density surface we desire, i-e.,
Oo(x:t) = p(x’t)'
bother the reader (we hope there are cnly two).

At this point, we ¥xnow of two previous points which might
First point: we have been

saying "level line representation” and to be precise, perhaps we should have
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said "level curve representation." We will prove that the level curves are

lines. Second point:

P
f 5—“— dt
X
t p=p,,
is a bit vague perhaps, but it turns out that
ig - d(vo)
P do
X1 - p=p
P Do o
so that
v 0
JEL Yee (2] Y )
X - p=p
€ Lo Po °

This last relation, by the way, proves the first point about the level curves
being lines. Now we will establish that

- (vo)
dp

p
X
p=p,

p=p,

In a smooth flow, conservation of mass is expressed by o, + (pv)x = 0. By the
first key, v = v(p), so

d(pv) .

oy * do  Px ° 0
Therefore,
J 0t dGv)
x %
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Therefore,
- f_t , d(pv)
p dp
X _ p=p
| p=p_ o
and
aX _ d(pv)
dt dp -
g p=p,

is the differential equation for the level lipe with density b, Hence,

dp

X(po;t) =X+ [M

dv _ dv
E;—v+pdp
and
dv _ .
o b Cbyv=go 0.
2C
Gﬂ-"'Y’:-i-
2 . 4P
C ”
and
P =k
So,
x *
g{ - dé:o) = (vt
P=p p=p
51
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Therefore, the level lises are A, characteristics. Thus, in short summary,

the density lavel curves are lines and also they are A+ characteristics
(figure 3c).

o <

Piston

-
A
+

% characteristics have slope -Cr.

A+ characteristics have slope {y+1)/2 at + Cr at the point (1/2 at?,t).
Figure 3c¢. Characteristic Lines Plot

If the minimun intersection time of the A+ characteristics is computed, it is
found to be 2Cr/a(y+l). 4 pnint where A+ characteristics cross may indicate a
discontiruityv. This is because v + 0 is a different constant on different A+
characteristics. 8o, when two characteristics cross, the contradiction can
sometimes be resolved by a discontinuity at the point. And, of course, the
discontinuity is known as a shock. Now we have X(p;t) and the problem is to
find o(X,t); so we must "invert' the relation

X X+ (v(oo) s c(oo)) (6-5,)

52
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where

Po © p(Xo’t'o)

By the second key, v, ¢, U, P, p are known at the piston face. All values of
the velocity that are taken on will be taken on at some time at the piston face.
Therefore, by the first key, all valuves of ¢, C, P, p will be taken ..: it some
time at the piston face. By the first key, if we know the velocity surface,

we know the complete solution. It is computationally convenient to switch to
the velocity as the function to determine first. By the first key, the density
level lines are also velocity level lines. Thus, for any value of the velocity
that is taken on in the preshock region, we can find an X ,t ou the piston
path such that v(xb,to) = v . Thus, we can produce the X(vo), t(vo) such that

0
V(XGQJ’t(Vo) = v, which 1s required by the first part of the level curve

representation procedure.

X =1/2 atg + (ato +C (1/‘2 atg,co)) (t—to)

and
Therefore, '

Solving for v, we get

%, t) (e 12 o) ae) + \/(Er - 2 ae)" + 20y (c,e%)
vV, = V&, t) =

Y
for
X <X<Cct
P hl
and
0<t«<t
- = "8
53
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Also, v{X,t) = 0 for X > C.tand 0 <t<ct.. Then using the simple wave

formulas: .

k:
)

£
. ";
By

|~

DAV

lim vx(x,ts) z

3 2y

ks v-1

e e

f Notice that at time t8 = Zcr/a(y+l) and position XS = Crts, the

- -

XX
8

This indicates that a shock forms at (Xs,ts). Now we <ompute the total energy
and energy partition. The total energy should increase according to the amount

of work done en the gas by the piston, which is

- __m::} R IO P et b9 0 07

.:' i
|
3 t t QT |
b Y-

_ xlat '
: fPP(T)Vp(T)dT f P, (1 ) cr) atdt |
A ° ° |
|
i Integrating by parts, this becomes

: 3y-1

3 . 2oy 14+ L3t i t

: -1 2 ¢

2 ’

] 4y=2

: 2¢_ P =2

; + _ rr 1 ~-{1+ .Y—T_l. -a-t—

: a(3y-1)(2y-1) 2 c
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-~

To get the energy partition, we have the chotce of computing either the kinetic
or the internal and subtracting from the total energy to get the other. We

wiil compute the internal erergy in *he compression wave.

X X
c c

Internal energy = S pedX =.§ ;gr dX
X X

P P

by the equation of state. Using the velocity level line equation which is a
quadratic in the velocity, we get

dX = - L (c - Iié-at + Yv) dv
a r 2

At Xp, v = vp = at, At Xc’ v=y_ = 0. Using these substitutions, we get

at
1
Internal energy = YY) P(v) (A+yv) dv
)

where

at é.'—
1 y-1l v -
a1y f Pe (1 e q) (+yv) dv
(s}

and this can be integrated by parts.
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at

2y 4
-1l v v-1 ’
1+ 5= —
I 1 Pr 2 Cr 2cr
nternal e = Xt
al energy = ———3s T s {A+yv) .
-1
o
i 24
~1 v v-1
cr

Finally, kinetic energy = total energy - internal energy. For computation -

purposes, it seems best to choose a point, XQ’ far enough to the right of the
piston so that the fluid is quiet (at rest) at XQ throughout the course of the
problem. Then take the “nitial total energy, which will be

P

(XQ—XP(O)) p_e, = Tfi (xQ-me))

and add the total energy increase,

t

f PPvpdr

(o
This gives the total energy from xp to Xq. Then the internal energy will be
the internal energy ir the compression wave, computed above, plus the internal
energy from Xc to Xq, which is

la-]

(xgc) « or * e = (¥q%c) v
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Finally, the kinetic energy from XP to XQ will be the total energy from XP to

XQ minus the internal energy from XP to X Note that the kinetic energy from

QO
X, to X, is zero because the velocity is zero.

c n
¢. Application as a Test Problem

{1) Eulerian Input
(a; Initial values

P=P ,p = P VEV, S 0

r’ r

{b) Boundary values
Let X(I) = IaX

Let GI be the greatest integer function:
I(t) = GI(1/2 at?/sX)

Then the left-hand boundary (piston face) will be zone I(t)

and the boundary values there will be

velocity = at g%i
pressure = Pr (1 + l}]; -z—t—)Y
Y
2
density = Py (1 + -Y—;—]: gf)y-l

(2) Lagrangian Input
(a) Initial values

pressure = P

L}

density o

g

velocity = v, = 0

(b) Boundary values
at x = 0 (piston position)

= 2 -
XP 1/2 at“ and vp at
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(2) Numerical Values for SCTP-III
(a) SCTP-III-A

10% dynes/cm?

rd
L]

1075 gm/cm?

¢] ©
[ I B e
n ]

n

YPV = 1.4 x 1019 cm?/sec?
rr

cr/l sec

Ax = 10 meters

Right boundary at 1500 meters

A reasonable recipe for output is as follows: Run for I sec (problem time not
computer time) and print at 0.1 sec intervals and at time 2/(y+l) (when the
shock forms). 1f the CFL number equals 1, this takes 218 cycles. This follows

from

n n
AX AX
At® = min I piston
1 ¢ &
I piston
Then by conservation of mass,
& _Pr
A o
So,
ac® = 2% 1
e
r

By the simple wave formulas

and

vt w———————— -




T . -

< {3t

— TS T e T T E g e TR A AT

—r— L N N

-  omam et
e . e c— - A huRl i T

U e PR
4 3‘69','3

A . ArWL-TR~-67-127
A A

T

e

PR -
) ':‘f .c._. = 1 + _...L E.E.
] A c 2 ¢
4 F. - r r
1 y: Thus,
; g t®=0
L{ < a

104 n i

| ‘ "t = Z At

2 i=1

£ and

,‘t

1

i Atn - Bx 1

cr (l + v-1 atn-l) v+1
2 c. y-1

Then solve the recursion relation for the smallest N such that tN > 1.

(4) Coaments on the Computer Solution

(a) General

The characteristics solution is wvalid until the A+ characteyr-~

istics cross at time t. = 2cr/a(y+1) {shock formation time) at distance
h:¢

£

s = 2cr/a(7+1) (shock formation position) from the original positiov of the

A SR

piston XP(O). At this time, to the piston is traveling with velocity 2cr/(v+1).
After time tos the characteristics solution methed is not valid.* For all time
the total energy formula is correct.

i

Bul the energy partitior derivation
depended on the characteristics solution methed, so it is valid only up to
shock formation time.

(b) PUFF comments

FI AR AAN - SRS 2
1008

The boundary conditicen should be vp = aft-0t/2), not v_ = at

> because PUFF in ike velocity, pressure, density profiles is the “compression

4 overround" &t X_ displayed in figure 3d.

*See Friedrichs' 1948 C.P.A.M. paper menticned in an earlier fcotnote for
discussion of solutinn after shock.
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Density
Pressure
Velocity

4

\ PUFF
\

EXACT —_— A

v
5

Figure 3d. PUFF SCTP-II1 Error Graph

1. ,SCT?-ITI-A
A(CTURACY: See table III-A.

TIMING: PUFF took 245 cycles and 19 seconds CP time
(CDC 6600) to run to 0.8333 second. Effective CFL number = 2i8/324 = 0.68

or: run to 1.0 second.
2., SCTp-III-B

ACCURACY: See tabie III-B.

TIMING: PUFF took 245 cycles and 21 seconds CP time
(CDC 6600) to run to 0.0833% second. Effective CFL number = 218/324 = 0.68

on run to 0.1 second.
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Problem time =

Pressure
Velocity-

Density

EXACT

PUFF

Problem time =

Computer time =

Pressure
Velocity

Density

EXACT

PUFF

Table 1II~A

PUFF ERROR TABLE FOR SCYP-IIT~A

0.8333 sec

Computer time = 19 sec

Sum Sar. Err.

0.0057
0.0125

0.0053

Sum Int. Energy

4.36800 x 109

4.37190 x 109

PUFF cycle = 245

Number of active zZones = 19

Position of

Max. Err. Max. Err.

0.042¢ X.C
0.0909 XC
0.0407 XC

Sum Kin. Energy Sum Tot. Energy

2.62864 x 108 4.63087 x 109

2.64055 x 108 4.63595 x 109

Table III-B

PUFF ERROR TABLE FOR SCIP-III-B

0.08333 sec

21 sec

Sum Sqr. Err.

0.0057
0.0125

0.0053

Sum Int. Energy

4.36800 x 108

4,37190 x 108

PUFF cycle = 245

Number of active zones = 119

Pogition of

Max. Err. Max. Err.
0.0426 XC
0.0909 XC
0.0407 XC

Sum Kin. Energy Sum Tot. Energy

2.62864 x 107 4.63087 x 108

2.64055 x 107 4.63595 x 108
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4. HYDROCODE TEST PROBLEM SCTP-IV

a. Description of Problem

In this problem, a piston has a constant acceleration out cf a gas at
rest. Eventually, the piston velocity exceede the speed with whick the gas can
move into a vacuum. This speed is 2cr/(Y~1) and when the piston exceeds it, 2

vacuum occurs. Figure 4 presents a graphical explanation.

v =qot Rarefaction wave . Rest region

X, =1/2 at? X, =C.t

Piston face Sound signal front

Figure 4a. Pipe Plot for SCIP-IV

Fest region

Ficure 4b. Wave Plot for SCIP-IV
62
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b. Deriva*ion of Soluticn

The 2nalysis is the same as for SCTP-III.

z
—(c -yt ag) + \/(c -l at) + 2ay(c t-X
x 2 3 2 r L

2<:r
vl < =%
c=c -+ -1
2 v
2y
v-1
T
2_
c vl
p = Pr .
T
For
2cr
vl > £

there is a vacuum; therefore, 0 = P = p = ¢ from XP(t:) to

I'Zcr
%(t,) - 7= (eev)

tv is the time the vacuum 1is formed,

c
= X
ialt:v T oy-1

63
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The energy decrease is the amount of work done on the piston by the gas which is

¢ 3y-1
2¢ P ‘Y.-l
—rrfylat
f Pp(0)v, (0)at = & (1+ - “—r) ¢
(o)

hy~2

2c2p YIl
+ tz 1-{14+Xxlat
a(3y-1) (2y-1) .

[} ]}

until time

(34

_ T
v JalG-1)

at which time

t

v
J. Pf(t)vp(t)dt =

[¢]

2¢2p
rr
a(3y-1)(2y~1)

The energy partition is also computed exactly like SCTP-III.

c. Application as a Test Problem

(1) Eulerian Input
(a) 1Initial values

P=P,.p=p

v=v =0
r

r’ r

(b) Boundary values
Let X(I) = AY - 1
I(t) = GI - 1/2 |a|t2/ax%)

I(t) will be the piston face zone and at the pistor face

v = -]ajt
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SYERER

2 b

- 2
p = p(“l%lt_"t)
(2) Lagrangian Input
(a) Initial vaiues
P= Pr’ P=p. V=V = 0
(b) Boundary values
At x = 0,
X = - 1/2]a|t?, v = -|a]t
(3) Numerical Values for SCIP-IV

(a) SCTP-IV-A

o
(]

10% dynes/cm?

10-6 gm/cm3

©
]

0
nN
]

YPV = 1.4 x 1010 em?/sec?
rr
a=- cr/1 sec

Ax = 1 meter
Right boundary at 150 meters.

A reasonable output recipe is to run for 10 seconds with prints at 1, 4, 5, 6,
and 10 seconds.

(b) SCTP-IV-B

Same as A but a = - 10 cr/l second and print at 0.1, 0.4,
0.5, 0.6, and 1.0 second.

(4) Comments on the Computer Solution
(a) General comments

After time
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2¢c
r

tv = !ai(y~1)

there is a vacuum hetween the piston and the gas at

2c

2 4 L (i
1/2 atg + =1 (t tv)

the pressure and density are zero for t 3,tv. From the left edge of the gas at

~

Zc

1/2 at2 + ﬁ (t—tv)
the same formulias hold as before t, If the hydrocode uses specific volume as
a variable instead of density, there will be an overflow when the density goes
to zero. The total energy should decrease until the vacuum is formed, but
after o the total energy should not change. The energy decrease is the work

done at the piston

t
)( PP(t)vp(t)dt:
()

This was computed in the derivation of solution. A Lagrangian code with zone
center pressures will not compute the energy decrease correctly because the
piston face zone will never have zero pressure. The energy partition shouid
also be checked against the EXACT solution as computed in the derivation of

solution. For further comments, look back to the comments in SCTP-II.
{b) PUFF comments

As previously observed, it is impossible for PUFF to conserve

energy on this problem. The worst behaving variable is the nonprimary* variable,

momentum; the reason this is off so much is jecause its computation involves

*Primary and nonprimary variables are defined in£Appendix III, Error Functions
and Error Formats. ’
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the mixing of 2 zone center quantity (density) and a zone boundary quantity
(velocity), thus introducing interpolation errors which cannot be ascribed to
PUFF. PUFF's primary* variables are quite near the EXACT solution. See
figure 4c and tables IV-A and IV-B for accuracy.

TIMING: PUFF took 25 seconds CDC 6600 CP time and 169 cycles
to run to 10.0 seconds on SCTP-IV-A. On SCTP-IV-B, PUFF took 16 seconds CDC
6600 CP time and 19 cycles to run to 1.0 second.

PUFF Primary Variables:

Prcssure
* Velocity
Density
EXACT
N
— v
o
Y\PUFF
Rarefaction
underround
]
X
) s
XC

Figure 4c. PUFF SCTP-IV Error Graph

*See Appendix III for definition of primary variables.
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Problem time = 10 sec

Table IV-A

PUFF ERROR TABLE FOR SCTP-IV-A

Computer time = 25 sez

Pressure
Velocity

Deneity

EXACT

PUFF

Problem time = 1 sec

Sum Sqr. Err.

0.0017
0.0004

0.0013

Sum Int. Energy

PUFF cycle = 169

Number of active zones

Mzx. Err.
-0.0099
~0.0038

-0,0071

Sum Kin. Energy

= 134

Position of
Max. Err.

Xc

%p

£

Sum Tot. FEnergy

3.09266 x 1010

3,04551 x 10190

6.98426 x 109

8.92017 » 109

Table IV-B

PUFF ERROR TABLE FOR SCTP-IV-B

Ccmputer time = 16 sec

Pressure
Velocity

Density

EXACY

PUFF

Sum Sqr. Err
0.0166
0.0v018

0.0132

Sum Int. Energy

3.684 x 1019

3.671 x 1010

PUFF cycle = 19

Number of active zones

Max. Err.
-0.0492
-0.0042

-0.0352

Sum Kin. Enargy

3.79108 x 100

3.93752 x 1010

= 21

Position of
Max. Err.

Svm Tot. Energv

6.984 % 103

2.844 x 10%

68
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5. h{DROCODE TEST PRGBLEM SCTP-V

a. Description of Problem

This is called the shock tube problem. It ‘s an example of the more
general Riemann problem. The Riemann problem is that of determining the flow

after the conjuaction of two states, left state and right state, with Pl’ P

v2 the constant valves of the Jleft state and Pr’ P,

the right state. In tae shock tube problenm, v and v

» V_ the constant values of
z-are no longer arbitrary
but are set to zero. So the probiem may be interpreted as the determination
of the flow after removal of a membrane separating two corstant states at rest.
We choose to make as a convention P, 2P > (0. Then in the code test prcblem

we will run through the three possibilities

At time zero, the membrame is removed. The resultant action is 2 rarefactica
wave traveling into the left state and a shock traveling into rhe right state.
The velocity is v, = G to the left of the rarefaction wave. From the left of
the rarefaction wave to the right, the velocity rises linearly from O to v 0.
The velccity is constant at A from the right of the rarefaction wave rightward
toward the shock. At the shock, the velocity juups from v, > Q down to v, = G.
See figure 5d for a welocity plot. The pressure drops continuously across the

rarefaction wave from P, to Pm. The pressure has the value Pm constantly from

the right of the rarefaition wave to the shock. The pressure drops from P, to
P_ across the shock. See figure 5e for a pressure plot. The density drops
c;ntinuously across the rarefaction wave from py to a oo which value it main-
tains from the right of the rarefaction wave to the point in the fluid where
the initial discontinvity* was and therc the density jumps up to Cor® From the

initial discontinuity point to the shock, the density is gmr’ At the shock,

*This density discontinuity is called a contact discontinuity.
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P

Membrane :
PQ’ °1 Pr’ pr
Figure 5a. Pipe Plot of Initial Conditioms for SCTP-V
i
i
)
Pensity | = ¢
Xarefactio
Left constant Right coastant
P, . region Pr,or region
- X

Figure 5b. Eulerian Wave Plot for SCTP-V
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t
. Q Contact
L discontinuity path

7. Shoek path
nr

Figure Zc. Lagraugian Wave 2ot

Vave Nuwe

5y
VAN e ¥ v
DY

b

™ e TV Byt
PA AR - AN Rt iy
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B
e

. Figure 5d. Velocity Plot
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K//initial profile

o - -—-——s‘l‘

i N :
|

- Lo -

1 i 1 ¥
| ! j >
XC XR XS
Figure 5e. Pressure Plot
o .
Detted line is
initjal profile
T ﬂ
‘ J
1 L.t ;
] 3 T - 4
XC xR XD xS
Figure 5f. Density Plot
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the density jumps down from Prr to Py which value is maintained all the way tc
. ‘ the right. See figure 5f for a density plot. We will mention again that this k
is a speclal case of the Riemann problem because in the Riemann problem, the !

. velocities are also arbitrary along with Pz, Pys Pr’ P Figures 5a through

51 give graphic explanations.

]

P P N VL T

b. Derivation of Solution

Assume states m and r are connected by a shock facing to the right, i.e.,

Pm > Pr' By the conservation of momentum relation, (2:N2L), derived for SCTP-I,

m
Vr=VS"'p_“
- r
ju
- szvs—s—'
' r
So '
m‘;‘—-?’——>=1>ﬁ—?r :
r Pu ' i
06
mz(V-V =P - P
r m) m r
and
’ Pm-Pf
m = o
r w

By the Rankine-Hugoniot relation, (5:RH), derived for SCTP-I, the Vm may be
eliminated to yielid

-1 . - (e
Pm + Pr_y-*-l ) (vi1) Pm + (y-1) Pr
2y 2v
v+l 'r r
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or Vr may be eliminated to yield
4 . -
m2=(Y e+ (1) P )
2V :
m
By (2:N2L),
Pm-Pr
v o=v o+
m r m
So,
2Vr
m = Vi + (Pm—Pr) (y+1) Pm + (y-1) Pr
1
Then )
Vo T Ve + Qr(Em) -
and v, =v, +¢ 'P )
T L m\'r

Figure 5g is a plot of the possible Pm’ Vo values for a shock fzcing to the
right when the right state (Pr, vr) is prescribed. That is, it is a plot of
the right facing, righ*. .specified shock relation for P, v which is

v=v, + ¢f(P)

So if Pm is determined, then v, is determined by

v =v_+¢ (P )
m r r\a

In the analysis for SCTP-II, it was demonstrated that across a rarefaction wave
traveling to the left, the Riemann invariant v + ¢ is constant {recall ¢ = 2¢c/’

y-1). That is, a rarefaction moving tc the left is a A+ simple wave. Therefore,

i ne b = e AP A R R
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2 - - A o 1
Jf the initizl state was homentropie, then

t
2 (e
Pm m

since the changes in state in a rarefaction wave are isentropic. Combining
€2 = yPV and

Y
Po (2
o\t :
yields %
%
1
_— i
b 2y y-1 y-1 !
CQ, -C = /‘; _.& P 2y - P ZY !
m Y L m :
3

o D
?P »V )
r’'r

Figure 5g. P, v Plot for Right Facing, Right Specified Shock
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So, for a rarefaction wave moving te the left,

N
Va = Va F y-1 (CQ Cm)

orx

1
R =
2/_x P!, P 2y P 2y
y=11 v m .
Pe

then
Yo T Ve T WQ(Pm)

We summarize and review the action: In the shock tube problem, if PQ > Pr’ a
shock will travel to the right and a rarefaction wave will travel to the left.
To the right of the rarefaction and the left of the shock will be a region
constant in pressure and velocity but having one discontinuity in demsity at
the point in the fluid of the initial discontinuity. Other than this jump,
the density is constant (it takes on only two values) in the middle region.
See figures 5d, 5e, and 5f. Proceeding from left to right, the density is Py
in the left constant wave; then it drops continuously throught the rarefaction
wave to p_,3 then it jumps up across the initisl discontinuity to P’ then

it jumps down as it crosses the shock to e If the initial discontinuity has
the Lagrangian label x = 0, then the line x = 0 in the Lagrangian wave plot

is the path of the initial discontinuity. Therefore, the line x = 0 is the
path of the contact or tangential discontinuity. See figure S5c for the

Lagrangian wave plot.

Shock relation:
v =V +¢(p)
m r ry m
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Rarefaction relation: °

Ym T Ve T wz(Pm)

These two relations determine Yo and Pm. The equation for Pm obtained by

equating the two right sides of the above relations is

1
{ yl oyl
(P—P / e =+2/£P2 p ¢ _p 2
m ) (y+1) P + (y=1) P y~1 1 £ m
A @ T 3

or

1
2 2y
(i-i) 2 _ 2 fz) 1-(5_-;)
Pz PQ P P y~1 Py PQ

pm£

= ~1 .RH) -
e = Ppp 1S determined by (5:RH):

P +PF

0=e _-e +-2= (V -V )
my r 2 my
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where

The shock veiocity is determined by the shock speed-pressure relation, (7:SS(P)),

derived fer SCIP-I:
s T r{ 2 "o 2 r

The velocity in the rarefaction wave linearly connects v, = 0 to v as was
shown in SCIP-II. Then in the rarefaction wave,
Zy_
. ) -]
PP, 1--”-—1—‘(;—)
2 -

as was shown for SCTP-II. The left side of the rarefaction wave is at

Xc(t) = xS(O) - Ct
and the right side is at
= Y £ S .2
XR(t) = XS(O) \Cz 7 vmlt

as was shcown for SCTP-II. The shock wave is at
xs(c) = xs(O) + vgt

The initial discentinuity point of the fluid is at
XD(t) z xs(O) + vt

78
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Solution summary:

Left
Region

Rarefaction

Region

Middle

Region

Right
Region

R R

For X f_Kc(t), the values are Pz, Pgs Vg

For X.(t) < X < Xp(t), the values are

X ~ xc(t)
1w - Y v
“R(t) kc(t) m

v(X,t)

(  For Xp 2 X < X, (t), the values are P vy

For XR(t) <X < XD(t), the density is ot

>
{ For XD(t) <X < Xs(t), the density is Por

For X > Xs(t), the values are Pr’ Pps V,

c. Application as a Test Problem

(1} Eulerian Input

(a)

Initial values

For X < XS(Q),

73
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For X < XS(G),

(b) Boundary values

At X = 0, hold the values at Pz, P> and vy

(2) Lagrangian Input
(a) 1Initial Values

For X < XS(O),

For X > XS(O)

———
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{b) Beundary values

At x = 8, hold the values at PQ, P,y V

2 2
(3) Numerical Valuves for SCIP-V
(a) scrP-v-A
XS(O) = 100 ameters

AX = 1 meter

P, = 108 dynes/cm?
9, = 1075 gm/cm3
v, = 0
Pr = 10" dynes/cm?
P = 107°% gm/cm3
v. =0

r

Right bouadary at 250 meters

These imply the following values:

P 2 1.888 x 107 dynes/em?
v £ 3,964 x 10% cm/sec
Py = 3,040 x 1076 gm/cm3
Py, = 5-982 x 1078 gm/emd
v. = &,760 x 10% cm/sec
S

The output recipe we used is: print out at time 1 x 107™* sec, 1 x 1073 sec,

and 2 x 1073 sec.
{b) SCIP-V-B

Same 2¢ A except

XQ(O) 250 meters

1075 gmjen

Py

Right boundary at 500 zeters

These imply the following values:

O L Tl T o S W puvv

RPN

v e e ememAaw v
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5 P % £.610 x 107 dynes/cm?
3 v, 2 6.196 x 10% cm/sec

. : Ppg = 3751 x 1077 gu/en3
3 Pop = 5-992 x 1075 gu/cmd

3 vg = 7.437 x 108 em/sec
{c) SCIP-V~C

3

Same as A except

P

g XS(O) = 250 meters

- pz = 10-6 gm/cm3

3 = 105 3

3 P 107° go/em

' Right boundary at 500 meters

E These imply the following values:

3 P = 7.406 x 107 dynes/cm?

v % 2.48% x 10° cfsec

3 o_, = 8.070 x 16~7 gn/ca3

¥ mf

: P, = 5-995 x 107° gn/cad

E: vg £ 2.98L x 10° co/sec

5

.ﬁ (4) Comzents on the Computer Solution

2

f (a) gGeneral

P The variations A, B, C were made to explore the three

- ssibiliti = Tt i $1 i

: possibilities P, > Pps Py =P 9, <p . The solution is good until che

E rarefaction wave reaches the left hand bounda:y or the right hand bourdary.
é At the last time, we have the active zcae situnztion as presented in tadble V-A.
- (b) PUFF

: ACCURACY: Ua SCIP-V-4, the most noticeable error was a

¥ smearing of the density discontinuity at Z& (see figure 5h). The only other
; errors were the typical round unders and rouad overs at corners. (See

3 figure 5h and table V-B. On SCIP-¥Y-B, there was a bpit of oscillation in the
g
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é
A
Depsity
. A . ‘
3 -8 ‘
///m.’m ‘%
¢ PUFF d ]
: |
] S i i
| i 1 !
» X
t t i 1
e R B Xs
§
A Figure 5h. PUFF Error Graph on SCTP-V-A
; ’ density in the coupressed region and a little overshoot in velocity and an
H undershoot in pressure at XR' Sex figure 5% and table V-C. On SCTP-V-C, the
. dominant error was the overshoot in velocity as shown in figure 5i. The ckher
3 error was a slight undershoot in the pressure at XR’ See tzble V-D. ;
" i
!
¢
§
5 %
3 Valccity §
i .
H 4 PUEF i
23 i
) P :
i 4 AN H
3 !
:
i .
' g » X
. %z ¥R Xs

Figure 5i. Error Graph for SCTP-V
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TIMING: SCIP-V-A took 976 cycles and 61 seconds £DC 6600
CP time to run to 2 x 1073 sec. SCTP-V-B took 1527 cycles and 168 seconds £DC

6600 CP time to run to 2 x 10-3 sec.

CDC 6600 CP time to run to 2 x 1073 sec.

P

84
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Table V-A

ACTIVITY TABLE AT TIME 2 x 1073 SECOND ON SCTP-V

XC XS
(meters) (meters)
. SCTP-V--A 25 195
SCIP-V-B 14 400
SCTP-V-C 14 310
. Table V-B

PUFF ERROR TABLE FOR SC1P-V-4

Problem time = 2 x 1073 sac PUFF cycle = 576
Computer time = 61 sec Number of active zones = 202
Position of

Svm Sqr. Err. Max, Err. _Max. Err.
Pressure 0.0061 ~0.0545 XS
Velocity 0.0795 +0.875 X
Deraity 0.0271 +0.172 XS

Sum Int. Enerpy Sum Xin. Znergy Sum Tot. Energy
EXACT 2,177 x 1012 3.232 x 101! 2,500 x 1012
PUFF 2.178 x 1012 3.218 x 10!! 2.500 x 1012

&5
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!
Table V~C
. FUFF ERROR TABLE FOR SCTP-V-B .
. Problem time = 2 x 10~3 sec PUFF cycle = 1527
;‘ Computer fime = 168 sec Number of active zones = 405 .
{ Position of
, Sum Eqr. Err. Max. Err. Max. Err. :
4 Pressure 0.0137 ~0.263 X |
‘ Velocity 0.4447 +0.748 Xs
Density 0.03C6 ~G,415 %
Sum int. Energy Sum Kin. Energy Sum Tot. Energy
F EXACT 5.668 x 1012 5.834 x 1013 6.251 x 1912
T PUFF 5.669 x 102 5.814 x 1011 6.250 x 1012
Table V-D
j PUFF ERROR TABLE FOR SCIP-V-{
Problen time = 2 x 10~ see PUFF cycle = 611
:-: Ccomputer time = 71 ge: Number of active zones = 316
Position of
Sum Sar, Err. Max. Err, Max. Err.
Pressure C.0282 ~0,478 X I
Velocity 0.0487 0,701 X |
Density 0.0360 «0,471 X’3 |
k- Sum Int. Energy Sum Kia, Energv Sum Tot. Energy
\% EXACT 6.005 x 1012 2,460 x 1011 6.251 x 1012 )
i- PUFF 6.007 x 102 2,434 x 1011 6.250 x 1012 )
z
E
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6. HYDROCODE TEST PROBLEM SCTP-VI

a. Description of Problem

This problen is the collision of two shock waves.

Proceeding from left

to right, the values are Pl’ Pgr V connected by a right facing shock to Po,

L
Pos Vo which in turn is connected by a left facing shock to Pr’ Py Vi As a
convenlent convention, always take Pz 3-Pr' Figure 6 gives a graphical
description.
b. Derivation of Solution
After collision, the pressure profile looks like figure 6d. Now by

the analysis in SCTIP~V, v. =v_+ ¢
m Y v

(Pm for a shock facing to the right and
similarly, Vo T Ve T ¢2(Pm) for a shock facing to the left, where

v
2

¢a(P) £ (P-Pa) {(y+1) P + (y-1) Pa

From these two equations, Pm and v, are determined. Then by the Rankine-

Hugoniot relation, (5:RH), P and Py 2T determined. Let

_ -1
Ve = Pm
and
-1
Var = Por
Then by (5:RH),
P +P
1 _ 2'm _
71 (szz"vazm> =3 (V!?,m Vz)
and
1 Pm+Pr
—_ - === [y -
y-1 (vamr vamr) 2 (Jr vmr)

Let £ be the time of collision, st(t) be the position of the left shock

prior to collision, i.e., t < tc’ then

87
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N T Chme e - e - v w e s wWa s

P v
Yot Vg Py Por Vs P r* Fy’ r

Figure 6a. Pipe Plot for SCTP-VI Initial Values

1

Left shock after
collision ~—eemeee—p

discontinuity

Contact

———--n.’

Path of the righthand
<«———=shock after collision

Figure 6b. Lagrangian Wave Plot for SCTP-VI

3

2* Py S S P
. —’

Figure 6c. Pressure-Density Plot Prior te Collision

88




T TG I, R AT AT T T -"vr“«‘kﬁ‘»’*)\’il'(

- e S - -~ — e -

AFWL-TR-67-127

o
lm
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Figure 6d. Pressure Plot after Collision

st(t) = xsi(O) + Vszt

Likewise, let xsr(t) be the position of the right shock for t < tc’ then

Xsr\t) = &sr(O) + Vsrt
Let ng(t) be the position of the left hand shock after collision (t > tc)’
- then

* - = * -
Xsl(“) Xo1 * vsl( tc)

where X 01 is the place the collision occurs. Likewise, let Xgr(t) be the

position of the right hand shock after collisicn; then

* = foo
Xsr(t) Xcol + vgr\t tc)
For t < t ,

c

X < Xs (t) implies the values are Pz, Pos vy

st <X < Xsr(t) implies the values are Po, P, v

o] 0

Xsr(t) < X implies the values are Pr’ CIOA

. For t > ¢t ,
c

* >
X < XS (t) implies the values are Py, Per Yy

% y - 5
xsz(t) <X < Xcol + \m(t tc) implies the values are Pm, Vor Pog

X + v (t—t ) <X < X* (t) impiiés the values are P, v , ¢
col m c sY m’ m’ “mr
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*
X > XSr(t) implies the values are Pr’ Vs Py

c. Application as a2 Test Problem

(1) Eulerian Input !
(a) Initial walues

For X <« xsl(O), the values are

Pz > 0

>0

Py
vl >0

For st(O) <X« Xsr(O), the values are

where

RS LR LSRA 1 2T T UAY .
RAGAIE A I BB B 1 S DAYV Ak A A T LS R R W e

o
v
L)
\
o

Give

“m

)
v
(=]

and one of the quantities Pl’ Vor Pys thea all left quantities are determined. '
Alsc give one of the quantities Pr’ Ppr Vs and all right quantities are

determined. Therefore,
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> >
pE —~pr po
and
v, > {v.| >0
2 v

For example, suppose Pz and Pr are giver by (7:55(p)):

. v+l y=1
sg Jo + VB ( 2 Pl + 2 Po)

<
i

<
]

- y+1 1~1
sr vo VQ ( 2 Pr *+ Po)

By (1:2) and (2:N2L),

.

<
]
&
o
S—

<

[
-]

Hl
o
-t

By (1:v),

Sr ¢

(b) Boundary values

At X = 0, hold the values at Pz, Pys vy and at the right
hand boundary, hold the values at Pr’ P v

(2) Lagrangian Input
(@) Initial values
Same as Eulerian just given
(b) Boundary vélues

Same as Euleriar just given
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(3) Numerical Values for SCTP~V1
(a) sCTP-VI-a
X = 1 meter
X, €9)

Xsr(O)

]

75 neters

125 meters

i

and let the right hand boundary be at 200 meters Znitially

)
[}

10% dynes/cm?

107 gu/cw3

R
]

v =0

lar]
]

- 108 dynes/cw?

o
]

107 dynes/cm?

These values then determine the remainder of the values to be
% 5.997 x 1076 gm/cm3

p_ *5.97 x 1076 gn/fen3

v, £ 9.15 x 10% cm/sec

-2.88 x 16% cm/sec

<
L}

v , = 1.095 x 107 cm/sec
% ~3.46 x 106 cmfsec

3.468 x 1074 sec

He

I’y

1.13 x 10% en

g~/
He

= 3.66 x 108 dynes/cm?

Py = 1.43 x 1075 gn/cm3

L -5 3
Par = 3:09 % 107> gm/cm

v = 1.96 x 10% cm/sec
vfz * 3,75 x 1065 cm/sec

vk = 5,72 x 105 cm/sec
sY

A reasonable output recipe seems to be to print out at 1 x 10™% sec, t_ = 3.468
X 107" sec, and 7 x 10~" sec.
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(b) SCTPF~VI-B

Same as A, but P£ = Pr = 108 dynes/cm?. This yiclds the

following values:

Py =P, 2 5.997 x 1076 gm/cm3
v, = -v, £ 6,13 x 10° en/sec,
Vg = “Ver 2 1.095 x 107 cu/sec

A~ 2,282 ~4 sec
col 2.282 x 107" sec
- 3 4
xcol 1.00.x 10" cm
B 2 7.995 x 10% dynes/ca?
v 29,24 x 1076 cm/sec
= & =5 3
Poe = Por 2.098 x 107 gm/cn
- = = 6 e
ng vgr 3.65 x 10° em/sec

A reasonable output recipe

seems to be to print out at 1 x 107" sec, t. &

2.282 x 10-% sec, and 7 x 16~ " sec.

(4) Comments on the Computer Solution

(a) General

The solution should be correct until the shecks hit the ieft

or right boundaries of the

as the reflection of a shock wave of f a wall where the wall is at the collisicn

position. Because of its symmetry, SCTP-VI-B gives a code symmetry test on

shocks.

(b) PUFF

SCTP~VI-A took 1283 cycles and 87 seconds CP time on the
CbC 6600 computer. The major errcrs in evidence were the spikes in the density
and internal energy. Hot-thin spikes resulted from the initial discontinuities
in SCTP-I-A. A cold-thick spike resulted from the

as we have observed before

hydrocode. Note that SCIP-VI-B can be interpreted

sheck collision. See figure be.

SCTP-VI-8 took 1500 cycles and 113 seconds CDC 6600 CP time,

T-. major errors w~ere again in the density and specific internal eneigy. The

hot-thin and cold-thick spots occurred as in A,

3

No asymmetries were observed.
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Density

A

l—m" .
\
v
X X X
Sz 1 “Sr

Figure 6e. SCIP-VI-A Error Graph

See table VI for a tabulation of the errocvs at the final time, 7 x 1077 sec.
See figare €f. For tables VI-A and VI-B, we define XD£ and XDr to be the
vosition of the fluid particle which was initially at the left and right hand

shock positions, respectively. XD2 and xDr will also be used in figures 6e
and 6f.
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Density

4

Figure 6f. SCIP~VI-B Error Graph
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Table VI-A

PUFF ERROR TABLE FOR SCTP-VI-A

Problem time = 7 x 107" sec PUFF cycle = 1283
Computer time = 87 sec Number of active zcnes = 201
Posit:on of
Sum Sqr. Erx. Max. frr. Max. Err.
Pressure 0.0392 +0.352 Xgr
Velocity 0.0485 +0.514 Xgr
Density 0.103 +0.640 X
col
Sum Int, Energy Sum Kin. Energy Sem Tot. Enerpgy
EXACT 3.104 x 1012 1.375 x 1012 4,480 x 1012
PUFF 3.126 x 1012 1.657 x 1012 4,782 x 1012
Table VI-B

PUFF ERROR TABLE FOR SCTP-VI-B

Problem timz = 7 x 10~" PUFF cycle = 1500
Computer time = 113 Number of active zones = 201
Position of
Sum Sqr. Err. Max. Erx. _Max, Err.
Prassure 0.0411 +9.332 Xgr and ng
Velccity 0.0700 +0.602 Xgr and X:z
Density 0.0907 -0.516 XDIL and xDr
Sum Int. Energy Sem Kin, ¥nergy Sum Tot. Energy
EXACT 7.832 x 1012 9.430 » 16!! 8.775 x 10!?
PUFF 7.882 x 1012 8.940 x 101! 8.776 x 1012
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7. HYDROCODE TEST PROBLEM SCTP~VII

: a. Desewiption of Problem

o shock waves ars traveling In the same direction which is taken to
the right. When twu shock waves are traveling iu the same direcricn, the one

behind wili always overtake the one in front.

After overtake time, a rarefaction travels back to the left (for y < 3/3)

and a stronger shock travels on to the right,

Graphical representation is presented in figure 7.

Pos 0y v, Porr Popr Vi Pos oy vy

¢’ G*
sf sr

Figure 7a, Pipe Plot for Initial (alues in SCTF-VII

Rarefaction Contact discontinuity
wave 4

el

%hoc‘ﬁ/
Jvertake point

vesodife X

Figure 7b. Lagrangian Wave Plot for SCTP-VII
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P
<
e————c——
vT
| i %
XSQ XSr

Figure 7c. Initial Pressure Plot for SCTP-VII

4
i

e e

Pigure 7d. After Overtake Pressure Plot for SCIP-VII

D ‘Derival;icn of Solution’

Afiter oveztake Vo =V + 9, (I‘m) for the shock traveling to, the right

r

an_d v, =V~ ?2(Pm) for Lhc\

wz(Pm/ are defined ir SCTP-V. From the abecve relatiovus, Vo and Pﬁ1 are deter-

mixed, then Vcr is dutermined from the Rankime-Hugoniot relation (5:RH)
- J

1 Pmr'*'Pr
¥-1 (emrvmrpprvr) ) (,Jr-vmr)
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fom is determined from the fact that the entropy does not change
through a rarefaction; therefore,

Y
Pa =(°_2_)
Pm Pom
Let Vg Xs be the veloecity and position of the shock after overtake.
Llet v_. ,X and v__,X _ be the velocitieg and positions of the left and right
s&” 8% sr’ st

shocks (defined only prior toc overtake). Let (xo’to) be the point where over-

take occurs.

For t < t, and X < st(t), the values are Fz, Vos Py

For t <t and st(t) <X < Xsr(t), the values are Pz , v

v’ Vor® Per

For t <t and X > Xsr(t), the vslues are Pr’ Vs P

On che other hand, for t > t in the vegion

. > - - e {
X <X+ (’“9, cz) (;c to) X_(t)

the values are Pz, Vor Pye In the region

’ N 1ty Ity
A - ==L -
Xx\t, < X< Xo + ( cz + 5 v+ 5 vz)(t: to)

XR(c)

The velocity v goes linearly from v, un the left up to v, on the right and

£
2_
y-1 27V ™
p = °2 1+ 2 cy
‘ 2o
Y-1

In the region
X (t) <X <X +v r-t
° m o

“R
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the values are Pm, pﬁm’ and vm. In the region

Xo + Ym (t-to) <X < ‘(0 + Vs(t-to)

the values are pmr’ Pm’ vm. In the region

X>X +v (F-t )
o s o}

the values are .
Pr’ Pr> Vy

c. Application as a Code Test Problem

(1) Euleriar Input
(a) 1Initial values

For X j_xsz(O), the values are Pz, Vos Py

For st(O) < X 5_xsr(0), the values are P, , v

er’ Vor? Par

For X > Xsr(o)’ the values are Pr’ Vs 0

These values are determined when Pr’ Vs Pos Pzr’ and Pp are given.

.

(b) Boundary values
At X = 0, hold the values at Pl’ Vs Py
{2} Lagrangian Input
(a) Initial values
Same as Eulerian
(b) Boundary values

At X(0,t) = v_t, the values should be Pz, v

2 2 Py

(3) Numerical values for SCTP-VI1
(a) SCTP-VII-A

8X = 1 meter

X _(0) 75 meters

s2

100 meters

xSI' (0)
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P = 10% dynes/cm?
P, = 1075 gn/cm?

T

108 dynes/cm?

)
[

1012 dynes/cm?

i
#

Right boundary at 200 meters

These values yield

= 1.97 x 108 cm/sec

c, ®
vy £ 3.82 x 10® cm/sec

Py = 3.60 x 1075 gm/cp3
Ve =4.56 x 108 cm/gec
Vop £ 1.095 x 107 cm/sec

t, = 1.683 x 1075 sec

X = 1.018 x 10% cm

P = 3.32 x 10l! dynes/cm?
Vor & 9:13 x 10% cm/sec
Pop = 5.997 x 1076 g/ep3
A * 5.26 x 108 cm/sec

Ve £ 6.31 x 108 cm/sec
Pog = 1.63 x 1075 gn/cm3
P = 6000 x 1076 gn/cp3d

A reasonable output recipe is print ar 1 x 1075, 1.683 x 10™5 {time of overtake)

and 3 x 10~5 gec,
(b) ScTP-vII-B
Same as A except
AX = 1 centimeter

st(O) « 75 centimeters
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Xsr(O) = 100 centimeters

Right boundary at 200 centimeters

U it et

A reasonable output recipe is prirt at 1 x 1077, 1.683 x 1077 (time cf overtake),

and 3 x 1077 sec.
(4) Comments on the Computer Solution
(a) General

The computer solution should be in agreement until the
rarefaction wave or the shock wave reaches a boundary. The difference between
A and B is just the scaling of the space mesh. This variation was introduced
to see what, if any, ~hanges in the computer solution that space scaling would
introduce. 1It, of course, should not produce any changes in the computer if

the code behaves properly.

(b} PUFF

There was no discernible diffzrence in the PUFF solutions
of A and B other than the scale change. They both took 1642 cycles and about
110 seconds CP time to run to 3 x 107> sec. Density-specific internal energy
spikes are the most noticeable errors. Hot~thin spikes were formed at the
initial shock positions and a cold-thick spike was formed at the overtake
position. See tables VII-A and VII-B. In the tables, X5, stands for the
position of the fluid particle that was at the left hand shock front at time

Zexo.
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Table VII-A

PUFF ERROR TABLE FOR SCTP-VII-A

Problem time = 3 x 107° sec PUFF cycle = 1642
* Computer time = 108 sec Number of active zones
Sum Sqr. Err. Max., Err.
Pressure 0.0151 -0.184
Velocity 0.0399 +0.467
Density 0.0301 ~0.234
Sum Int. Enerzy Suxn Kin. Energy
EXACT 9.374 x 1013 1.489 x 1016
. PUFF 9.370 x 1015 1.438 x 1016
Table VII-B

PUFF ERROR TABLE FOR SCTP-YI1I-B

Problem time = 3 x 10”7 sec PUFF cycle = 1642
Computer time = 109 sec Number of active zones
Sum Sgr. Err. Max. Err.
Pressure 0.0151 ~0.184
" Velocity 0.0399 +0.467
Density 0.0301 ~-0.234
Sum Int. Energy Sum Kin. Energy
EXACT 9.374 x 1013 1.489 x 10"
. PUFF 9,370 x 10!3 1.488 x 101"
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Sum Tot. Energy
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2.425 x 10"

g




;
5:
}

R

% i e s bk

v Yo

| SRR T

S

AFWL-TR~67-127

This page intentionally left blank.

104

R i T




TR g v

i L U

AFWL-TR-67-127

APPENDIX I

ON THE EQUATIONS MODELING LINEAR FLOW GAS HYDRODYNAMICS -

We are going to inspect the typical mathematical model of an air-like gas;
that is, a gas which nearly satisfies the following characteristics:

homogeneous
coapressible
inviscid (nonviscous, no internal friction)
nonconducting (no heat transfer)
ideal or perfect equation of state (PV = RT = (y-1) e)
. The terms gas and fluid will be used interchangeably in the following.

Consider fluid flowing in a frictionless, insulated pipe. Let us establish
some coordinate systems. We will label points in the fluid and call this the
Lagrangian coordinate system. We will label points on the pipe and call that
the Eulerizn coonrdinate system. Stated another way, the Lagrangian coordinate
system is fixed in the fluild and the Eulerian coordinate system is fixed on the
pipe. As to notation, x will be used as a label for the fluid points and X
will be used as a label for the pipe points.

Let A be the cross-sectional area of the pipe. A iy taken as a constaant
independent of ¥ and time. Also, che cross«<sectiomal shape is taken 3s a
constant independent of X and time. Therefore, the pipe ard the fluid may be
thought of as oane-dimensional continuums, i.e., topologically equivalent to
some interval of the real 1ii.e, e.g., the unit interval from 0 to 1. This is
because in any cross section of the fluid perpendicular to the xxis of the
pipe, all tha properties of the fluid are constant, e.g., fluid velocity,

density, pressure, etc. The foregoing defines what we mean by linear flow.

Cousider the mass m of fluid between the fluid points labeled x - ax and
x + &x. This mass is constant because z ~ Ax and x + Ax are the labels of
fixed points in the flvid (not necessarily fixed with respect to the pipe) and
we are demanding the conservation of mass. Let ¥(x,t) denote the Euvlerian

coordinzte at time t of the fluid point labeled ». Often X(x,0) = x is taken
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- as a defining relationship between the fluid labels and the pipe labels. We
will foliow this convention. Likewise, p{x,t) will denote the mass density of

the fiuid at time t and at the fluid point lcbeled x.

px,t) > 0

5(xCx,02,8) = olx,1)

3 i.e., B is the density in the Eulerian cocrdinate system, whereas p is the
density in the Lagrangian coordinate system. The mass between the fluid points

E labeled x - Ax and x + Ax at time t is defined by

§ X(Z+4K,T)

3 - m=4 (X, t)d¥X
| ’ X (x-2x,t)

Now at time t = 0,

E

: X+AxX

{72 : n=A S p{x,0)dx

ijz % X-4x

x Therefere, by conservati a of mass,

E !

E rix X(stax, ©)

E S p(x,0)dx = ) o (X, t)dx
g ! . x-bz X (x-B%, t)

Let us mzke a ckange of wariabies; then

RTYT
-

3 X{e+dx, t) x+8x
6(X,)dX = S o(x,t) % dx
X{x-ax,t) x=~8%
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So, we have

u+Ax x+Ax
» s p(x.0)dx = 5 p{x,t) X dax
)4
x~4x% x-3x%

Therefore, under differentizbility assumptiops, the integral equation can be
expressed by the following differential equation:

p(X,O) = L‘(X,t) ‘3% {Xat)

This is called the conservaticn of mass equa” ion.

The velocity, v(x,t}, is defined by

v(x,t) = —g—}:- (x,t)

Newton's second law says that the sum of the external forres applied to a

rigid bedy is equsl to the time rate of change cf momentum of the rigid body.

Cousider the interval of fluid besween the fluid points labeled x + 4x and

P

® ~ A%. This fluid interval is not a rigid body. However, the law still
applies to this body if there are o internal fxicticmnal forces in the flaid.
In Ehe case of internal fricticnal forces iu the fluid, we must modify Newton'

law to say that the external force applied tc the fluid interval is equal to

oy N 4 3o

ARARYIA Y N DN kIS S0 B ]
Lty AT i a0 2

the internal frictional forces plus rhe time rate of change of momentum. We

~
2y

now postulare that our fluid model has uo internal frictional forces. Such a
fluid is cailed nonviscous or inviscid. The external forcz (taken as positive

whea in the direction of imcreasing x) on the interval at time t is

;; A(P(x—bx,t) - ?(x+t*.x,t))
3 . The momentur of the body at time t is

: . Z+AX

i, 2 A S D(C:o) V(C,t)dt
E: XAy

by
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Thus, Newton's second law yields

x+Ax t+At
0(z,0) (v(;,t+At) - v(i,t))dt = g (P(x—Ax,T) - P(x+Ax,r))dT
x=-Ax -

Under differentiability assumptions, this integral equation may be written as
the following differential equation:

v , P
p(x,0 5{ {x,t) = - 5;-(X,t)

This is called the conservation of momentum equation.

Now we will see what relation the principle of energy conservation will
produce. Let E(x,t) be the specific energy at point x and time t, i.e.,
X - Ax, X + Ax at time t is

x+08%
A S p(x,0) F(x,t)dx

x~A%

Tre conservation of energy principle states that the increase in L:e total
energy of an interval is equal .o the work dcne on the interval plus any energy
in cthe form of hear which ls rransferred to the interval. We now postulate
that there will be no heat transfer in our fluid model. Therefore, energy

conservation in our model is expressed in the following way:

x+AX ' t+At
S o(x,0) (E(x,t+At) - E(x,t))dx = S P(x-2x,1) v{(x-8x,T)
X~8X t

« P(x+Ax, 1) v(x+dx,7)dT

Jnder differentiability assumptions, this integral equation may be written as

the following differential equation:
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oE dPv
€,0) 32-(x,t) 5 - 3;—-(x,t)
/ This is called the conservation of energy equation. The total energy is

composed of the internal energy and the kinetic energy. This is expressad by
E(x,t) = e(x,t) + 1/2 ve(x,t)

where e(x,t) is the specific internal energy. (This could be thought of as
the defining equation for e.) This relation says that the total specific
energy is the sum of the specific internal energy and the specific kinetic

energy. Using the three foregoing conservation equations, we can derive the
following relation:

2 9

(1]
<

0 =

+ P

-
Q

t

Q

t

The laws of thermodynamics say TdS -~ de + dW, and in cur fluid model, we
postulate that all work is P4V work (this postulate may be provable frem the
homogeneous fluid postulate). So the equation

says that the entropy is constant for each x. This is called an isentropic
process. This process is not necessarily homentropic.* We postulate the

so~called perfect or ideal gas equation of state PV = RT = (y-1)e where R and

y are gas constants and T is the temperature. If we are not undergoing a
shock transition or passing through any _ther discentinuity, then PV = (y-1l)e
and TdS = de + PdV (the first law of hydrodynamics) yield

2 _ (oY e(f;s,e)
Po pc CV

PN
«

.

B

*In general, S(x,t) ig constant in neither x nor t. If it is constant in t but
not necessarily in x, then we say the process is isentropic. If it is constant
in both t and x, .:hen we say the process is homentsopic.

A e i 3 i)
PO AR SAN - Aivb A e
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where
¢y = 5
° t V const
~ :_(19
P cr P const
v
CV
4 = (y-—
and R= (y l)Cv

And if 0 = de + P4V, then

Hewever, for a fluid interval passing in time At through a shock traveling to

the right where the pressure on the left is P, and on the right is Pr’ we nave

2
t+At

TdS = e, - e, +Pv, ~Pv

£ 474 ry

as was shown in the shock relations discussion in SCTP-I. Using the shock

relations, we can prove that e, - e. +Pv, - Prvr > 0. Therefore, there is

2 L2

an entropy increase across the shock! But we just "proved" by using the three
conservaticn equations that the process was isentropic! How did this contra-
diction arise? 1t arose through the assumption that all quantities were swooth,

i.e., tk "~ the quantities in the equations

v X
vo ™ {conservation of mass)
32X R S 4 (conservation of momentum)
2 o, X ’
1ol
if = - %— 351 (conservation of energy)
o 9%
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were defined. Bnt they are not defined across a shock for there E, P, V, v

are discontinuous by the definition of 2 shock. (Notice that the derivation

did prove, however, that when the flow is smooth, it is isentropic.) Another
mistake that is sometimes made is in using the first law of thermodynamics,

dQ = de + PdV, and the statement that the process is adiabatic (no heat transfer)
to arriv; at the relation G = de + PdV. The errcr in this argument is that dQ
is composed of twc parts, dQ internal + dQ external. Saying that the proczess

is adisbatic is saying that there is no heat transfer to or from the system,
i.e., dQ external = (. But there mey also be internal friction in the fluid.

If there are inrernal frictional forces acting, then dQ internal > 0, so that

dQ > 0 when dQ external = 0. When dQ = O, the process 1is isentropic, for the
entropy 1is defined by TdS = dQ. But it could happen that the process is
adiabatic but not isentropic, i.e., dQ external = 0, dQ internal > 0. And it
could happen that the process is isentropic but not adiabatic, i.e., dQ internal
> 0, but dQ external < 0 and also dQ internal + dQ external = 0. Thus, adiabatic
and isentropic are two entirely different processes. Our no~heat-transfer
postulate implies that we have an adiabatic process in our model, i.e., dO
external = 0. But we have shown that our model is nct isentropic when shocks
occur. And we have assumed that the fluid was inviscid. The three previous
statements zre contradictory. Proof: The entropy increases across a shock;
tuerefore, dQ > 0, The process is adiabatici therefore, dQ external = 0.

Heuce, dQ = dQ internal > 0 across a shock. Therefore, there are internal
frictional forces acting. This is a contradiction since we assumed the fluid

tc be inviscid! Thus, the postulates assumed for our model are coatradictory.

let us review our principles and postulates:
Principle of conservation of mass
Principle of conservation of momentum
Principle of conservation of energy
Principle of monotone increasing entropy
Postulate of homogeneous fluid
Postulate of compr~3sible fluid
Postulate of nonviscous fluid

Postulate of nonconducting fluid
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Postulate of ideal equation of state

Postulate of dW = PdV

To produce a self-consistent model, we must throw out or modify some of the

postulates. The criteria for this remodeling will come from a closer look at

The best
resolution of the dilemma seems to be to recognize that the fluid we are trying

wnat we are trying to model. S, let us have a closer lcok at air.

to model has a very small viscosity (it also has a very small heat conductivity
but the more satisfactory resolution seems to be in the modification of the
inviscid postulate), and that this viscosity is not appreciable except at the
places that 32v/3X2 is large. The inclusion of viscosity prevents the occurrence
of shocks. The internal frictional force depends on the product of the vis-
cosicy number and 92v/9X2. Thus, the entropy increase depends on this product.

As the viscosity number goes to zero, 32v/9X? can become larger and larger und

apparently the limit of the product is finite but not zero. So, we effectively

R have an "implicit point viscosity." That is, the viscosity effect (entropy

increase) is felt only at points where 32v/9x2 i: infinite, i.e., at shocks.

The object of the remodeling is, therefore, to define the solution of the liwit

4 to be the limit of the solution of the equations including the viscosity as
'*é‘ the viscosity goes to zero. So we alter the inviscid postulate to "the fluid
,;" f'i is inviscid except at shocks and there the viscosity effects (entropy increase)

are those described by the shock relaticns." Notice that the erroneous deriva-

%{ﬁ i tion of O = de + PdV can lead to a success for shocks if it is differenced like
3 f{? the Rarkine-Hugoniot relation. That is, the Rankine-Hugoniot relation is
PP

. O=e) —e +—— (Vz—vr)
‘47”ji And if the difference scheme used were

'S

: o+l n
0 = n+l Ry PI + PI (vn+1 _ vn}
I I 2 I 1

where e; is the approximation to e(nét,IAx), then the difference scheme will

be correct across shocks. But it does not conserve the entr)py in nonshock
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regions.* It also does not explicitly conserve the total energy. Suppose we
wish to write the equations in terms of the (X,t) system instead of the (x,t)
system. That is, suppose the Eulerian fommulation is desired instead of the

Lagrangian. The transformation from the Eulerian system to the Lagrangian

system may be expressed in this manner:

3 9 38X 3
3T in (x, t)‘—*’s'g + 3¢ 3% in (X,t)
9 in (X,t)

1 9 1
500y 3% P B rmRy o

The first relation follows from the chain rule and expresses the so-called

convection derivative, The second relation just expresses the conservation of
mass

o X
. P 9x
The Lagrangian formulation is
v _Po 3x
_— = o (conservation of mass)
Vo 0 3x
3X .
V=T (definition of velocity)
ov _ 1 2P
at 0, 9x (momentum conservation)
JE 1 3Pv
i o ™ (energy conservation)
E=e+ 1/2 v2 (definition of internal energy)
e = %gf (equation of state)

*As a matter of fact, for pn+1/pn near 1, the entropy ecror is AS ~Cv(y—1/2)

+
(l~pn+1/pn). Thus, we have an "entropy increase" if o™ 1. ¢" and an “"entropy

decrease® if pn+1 > pf,
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The couservation of mass equation will not transform satisfactorily as it is
because X is to be ap independent variable in che Eulerian formulation. So it
is expressed in terms of the velocity by taking the time derivative of both

sides:

Notice another differentiability assumption is required here; the transformation
vields

VL XV 1oy
ot ot 3X p 9X
v, v _ 1P
3t ~ 3t X p 9X
3B M IE_ _1omy
ot at 3X p 3X
And, of course,
.
AT
so the Eulerian formulation is
ot T Va3 T o X
vV, v Lap
at ~ VX p ax .
BE, LIE_ 13y
at © V3% p X
and
- 2 4 PV
E=1/2 v¢ 4 -1
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APPENDIX II

SOLUTION METHODS

1. Method of Finite Differences 116
2. Method of Lines 132
3. Method of Characteristics 132
L Analog Methods 132
5. Hybrid Methods " 132
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1. Method of Finite Differences

For illustrative purposes,

the hydrodynamic equations.,

A )

we are going to use a linear approximation to

The equations describing an isentropic flow may be written (see Appendix I):

Po _ 3%
o) 9x

22 1 e
ate o, X
P=k?
where
Po
ki
Po
and
P, Z p(x,0)
Po I P(x,0) _
So,
-y
)4
P = PC (3_:{—>
and
VUL, (YY1 faxYV B R f\-(rHD) oy
t2 o, o \Ix - o, \3x 3X p, \ox 9x2

Therefore, using

again, we have

o

xil
in;hx_giin*’o(z_) 2%
at Py P, Ox Po \Po 0x
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Under the assumptjions that

|
7|3
Q

(x,0)

is near zero and P!Po is near 1, the above equation is approximated by

a2x _ YPo 3%
at2 P, ax2

P
(:2 51_9.
[ po
cC >0
o}

Co is called the ambient isentropic sound speed. Here

Cc = C(x,0)

but we will take it tc be a constant for simplicity in the succeeding illustra-

tions. So, our equation for illustrative purposes will be

%x o X
52 = C a2 (2)

This linear second-order hyperbolic partial differential equstion is called
the wave equatrion. If central differences are used, the difference equation

for the wave equation is

n+1 n n-1 n n n
XI - ZXI + XI - XI+1 - ZXI + XI—l
Ar2 o ax2

™~

where X; is to‘approximate X(IAx,nst). That is, X? is the solution to the
difference problem at the ma2sh point (n,I) which is the point (nadt,Idx) in
the tx plane and, therefore, X? is the difference solution which will hopefully
approximate X(Idx,nAt), the differential solution. At this point, we pcse a

question known as the Coumvergence Problem: Will the solutions to the Jifference
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n R . R
problemn, XI’ converge to the solution to the differential problem, X(x,t), as
4x, 4t > 0? The answer to this problem in the linear case depengs upon a

number,;f, known as the Courant~?riedrichs—Lewy number

C At ¢
- Q

= ax

If T,’_<_ 1, the answer is yes. Sometimes G is referred to as the CFL number.
1t is called this because the answer to the Convergence Problem in the linear
case was established in Courant, Friedriche, and Lewy's 1928 MATH ANNALEN paper.

John von Neurann made a conjecture that generalizes this resulr to the nonlirear
equations. It is essentially that if

CAt

o L
for all x and t(C = C(x,t)), then convergence would prevail in the nonlinear ‘
case also. This conjecture has not bezn proved. Experience indicates that
it is reasonsble and this is the condition used in current hydrocodes with -

only siight modifications- The foregoing difference equation may be arranged
in the following form:

at+l N n-l 2( B on n
X; = Zp - Xy " ’{; X1 ] + X711 ;
or
o o x“(z-z \512\ -xl oy ¢2(x“ + X0 ) (3)
S i Y } 1 I+1 I-1

In this form, the difference equation can be solved in a "“time marching"

manner. That is, given the values of X;, X¥“
a+l

for the values of XI for L+ 1 < I <R-1, Suppose we "soclved" this

1 for L < I < R, we can solve
difference equation or a machine which introduced round-off errors. That is,

f we have a machine that has only a finite number of digits in its numbers,

then it will make round-off errors in computing

2 2 3
R n~1 n 9
1"I(2’27"7 ) R T 4 (XI+1 HRSY,
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We denote this round~off exror by a?. We denore the machine soluticn by §Kn,1).

Ve denote the totsl deviation of X(n,T) from’ig by a?, i.e.,

n

AY = X(n,I) - X2

I

[e)

Now we pose a question known as the 5tability Problem: i1l the round-off

errors

u?limin

introduced in the machine solution cause X(n,I) to drift so far away from X?
as tn be useless as an approximation? As a first attack on the stability
problem, we ask: 1If a single perturbatiocn e?
and the resulting solution {with no other errors or perturbations introduced)

is

is inrroduced at the mth cycle

X7 + &y (m)

then does 6§(m) grow in time (i.e., with increasing n)? Sometimes the terminol-
ogy "weak stability,”™ “strong stability" is used in regard to the last two
questions. That is, if the answer to the single perturbatioa question is no,
then the difference equation solution is szid to be weakly stable. If the
answer to the ctability problem question is no, then the -lifference equatien

solution is said to be strongly stable. Let

n . a
= X/ -
AI X(n,1) XI

Ny and An-l

forn=1, 2, 5, .... Let 6“+1 be the propagsted error due to AI 1

I

n+l ntl _ fom . ,n ( - 2) - ( n~1 n»l)
X; o+ 6 (xI+AI)22; X; O+ 4y

2
L0 n n n
+% (“z+1 ol YR Ay

Subtracting the unperturbed equaticn (i.e., equation (3) waich was
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2 - 2
AR (W 4 ) -xlag (x“ + X

yields

nt+l n( 2) n-l 2/ n n )
87 = orl-2% ) - 47 +’é(AI+l+AI_1

If lg, A;—l are just prcpagared errors themselves, we could write

6T = 42 (2-2 ﬁz) -1y ‘;32(5‘1‘+1 + G‘I‘_l) (4) i
This is calied the equation of first variation of equation (3). It is the
equation for the propagation of perturbations of equation (3). Notice that the
equation of first variation of equation (3) is the same equation as equation (3).
That is, the equation of first variation of the wave difference equation is
again the wave difference equation. This i{s always true for linear difference

equations. Proof: Let

L[X+8] = L[X] + L[$]
by linearity. So that
L{X+6] - L[X] = L[§]
Therefore, the equation of first variation is
L[6] = 0O

Note that in the equation of first variation, the introduction cf rew round-off
errors is not taken into account. Thus, including the total round-off error

n+l
at the last step, €

1 ° the total error at cycle n+l is

n+l ntl
61 + EI

ntl,

and this is by definition 4, 5 so

n+l _ n+l n+l
AI = 61 + EI

That is, the machine solution is
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n+l
1 I I I 1

n+l n+l

3
+ § I =x“+l+ n+i

X(n+l,I) = X A

Now we ask if there is some restriction on At and dx such that the propagated
errors do not grow., The answer to the Stability Problem question turns out to
be the same as the Convergence Problem question, i.e., 3 <1 is the condition
on At and Ax. That the answers should be the same 1s plausible from this point
of view: The differential and the machine solutions can both be considered as
perturbations of the difference solution., Then a necessary condition for both
convergence and stability is that perturbations do not grow unboundedly in the
difference equation. The condition p?j_l yields the result that perturbations

do not grow.

We will now look at John von Neumann's method of analyzing the perturbation

growth or error propagation problem. Consider the propagation equation
oL o n(2-287) - 14 4”2(6“ + 62 )
L 1 1 I+l 1-1

The solutions to this equation may be written In temms of a Fourier series,

A typical term of the series being

eikx eat

8y

where k is an integer. We plu§ this term into the above difference equation

and snlve for o in terms of ;3 .

4 A 2 - -
8 eiLAxI ea(n+l)At - a eikAxI eanAt (2_2 ﬂ ) - 3, eikAx;. ea(n 1)at

2 -
+ ¥ (ak (Kax(TH) andt a JAkbx(i-1) eanAt)

or

2 - 2 -
e(:zAt: - (Z—Zﬁ ) - e adt + ﬁ (eiAxk +e ikAx)

2
Sc wezhave a defined implicitly as a function of k and ¢Z . w: can provz that
if O < 1, then the real part of o is < 0. Therefore, for ;f <1, the k

frequency compcnent of the solution to the error prepagation equation will not
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grow in time (because the k frequency component term is 3 e . This

holds for all k.

ikx at)
e

2
The condition < 1 implies ¥ < 1 which is

C At
°_ <,

Ax -

This condition 1is known as the Courant or Courant-Friedrichs-Le. or CFL
condition. It is the condition for both convergence and stability of the wave

difference equation,

The condition

C At
0

Ax 21

has a geometric interpretation in terms of the domain of dependence of the
solutions to the differential and difference equation. If the initial data
are given at time zero as X(x,0) and

dX
'd—t (X,O)

then the solution to the wave differential equation is given by D'Alembert's

formula:
1 ax
X(x,t) = 1/2 X(x-co t,O) + x(x+co c,o) e I < (6,00d¢

Thus, X(x,t) depends on the initial data given on the interval
-t 1
[x Cot.,x-l-CotJ

We may graphically describe the points that X(x,t) depends upon in figure A-l.
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Figure A-1.

Domain of Dependence Graph for the Differential Solution

Analogousiy, the domain of dependence of the difference solution Xg is

graphed in figure A-2 and is seen to depend on the values

and

0

X i for -n<4i<n

I+

1

X144

The CFL condition

requires that

This says that the slope of the bottom line should be greater than or equal

for -

n+l<i<n-1

T N A8 sy

to Co and the slope of the top line should be less than or equal to —CO. Super-

imposing the two graphs in the case bx/4t > C, yields figure A-3.
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I+n

(x,t) = (IAx,nAt)

———w L

Figure A-2. Dcmain of Dependence Graph for the Difference Solution

— b

Figure A-3. Relationship of the Domains of Dependence
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It is seen that the stabilit c.ndition requires tlat the domain of depend-

ence of X? "overlap" the domain o dependence of X{nAt,IAx). 1Ia other words,

X'IZ should depend upon a: least as wu:h information (in the limit as Ax,4t » )
P S as X(nat,Isx).

. At this point, we will explore a little farther into the parallel between
i the convergence problem and the stability problem. Io reveal this, let us
consider X? as a perturbed solution of X(nAt,IAx). (On the other hand, X(nat,
IAx) can be thought of as a perturbation of Xn). That is, in the stability

I
problem, the machine solution is a perturbed solution of the finite difference

problem and the perturbations are the machinz round~off errors. In the converg-

ence problem, the perturbations are the deviations made in each cycle by using

R

tue difference method to advance to the next time level instead of the

differential equation. To indicate the parallelism, we will redefine A?, e?,
6;(m) as follows:

P ALY

£k & 2t
s

: ’ no_ _
3 AI z X(nAt,18x) XI
n .
9 ¢1

I the error introduced ‘n proceeding to time nAt from time (n-1)at

via the difference equation rather than by the differential
equation

5;(m) the deviation due to the propagation of e? by the difference

equation

To give a precise equation for eg and Gg(m), we need tn select an interpolation
process in space and time to "fil1l in the gaps" between the X?. That is,
define a function X: such that X; = X? (vhere t = mAt and x = IAx) for m <n

and such that

exists and is an approximation to

and X: is defined also at all real x between the 18x points.

P
B %
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Crne of the nicest ways to interpolate in x is to use the difference
equaticn itself to fill ir the gaps. That is, to determine X:At, set up the

original wesh so that for gome I, x = IAx, then solve the difference equation
for X;, then set

Thie can be visualized as a translation of the mesh of the difference solution
in the space direction. To do something similar in time could be accomplished
if we were given a "band of initial data" rather than a line of initial data,

that is, initial data from t = 0 to some t > 0. Then we could do a “time
t

IAx°®
method (because we are not normally given an initial band of data) would be to

direction translation" of the mesh to determine X Perhaps a more practical

vary the initial time step in such 2 way as to produce a time direction trans-

lation of the mesh. That is, to define X;

t
t At - GI (KE)

(where GI is the grratest integer function). Then let At be the timestep

Ax? let the initial time step be

thereaftez.

S0, assume Xt is defined. Then, using D'Alembert's formula, the advance

from X" to Xn+1 via the differential eguation yields

1 t t
* f-- S
XE(erat,x) = 7 e ot * Xusc_ae

1 2 AX,
-5-*6'; J —'é-EdE
c
Tnen

n+l

. qnil
*1

= X*(t+At,x} ~ A

(where ¢ = nat and x = IAx) and then 62+l(m) is the propagation of e? by

equation (4)., ¥e kaow that the condition for the 6?(m) not to grow fn time
is that ﬁ 2 1. So this is a necessavy condition for convergence as well as
for stability. Im view of the geometric interpretation involving the domains
of dependence, this is saying that it is necessary that the difference problem
take inte account at least as much information {initisl data domain-wise) as

%
the differential problem if it f{s to cnnverge to the differzntial solutfon.
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A physical interpretation of the

C At
0
Ax

<1

constraint ls to consider the difference equation as a model of the signal
prorpagation process and to interpret the constraint CoAt -~ O8x as due to the
fact that tne difference relation only takes account of the interaction between
adjzczent zones and so the time step must be restricted so that signals cannot
flow from, say, zone I to zone I + 2, but that cnly the signals from zones I +

and I - 1 may reach zone I in one time step.

2
It turns out that the conditicn 12 < 1 is also sufficient for convergence.
For proof, see the CFL paper. For a more general convergenze proof for linear

problems, see Lax's Equivalence Theorem in Richtmyer's Difference Methods for

Initial Value Problems. We will give here the proof for convergence whern ;f =

hecause the proof is illuminating. Since

n+l _.n _ n-l n ( 2 ) n_ o0 n
Xy = Xy - X Xy + P YR -2
2

when ;: = 1, this becomes

ntl _ _n n~1 , 6 .n
Xp "= Xpg - ¥ T H R,

where

and Xo and x'l are the initial conditions. The foregoing equation may le

rearranged to
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XO .0 n- 1 x0
x? = ’I—n I+n + :Z: —n+21+2 I-n+2i -1 -
1 I-n+2i+1
i=0
By D'Alembert's formulas
x+C t
0
X(t,x) = =% x(o x~C c) + x(o x+C t:) P 2 (0,x")dx"
i 2 Yo ™o 2C t ?
o
X—C t t
[o] t
|
This may also be written
X(nAt,1ax) = %(X(O,IAx-nCOAt) + X(O,lei-nCoAt:))
IAx-PnCoL\t
1 aX
+ -2"6;- 3% (0,x')dx’
IAx-nCoAt
Or using CoAt, it me e written
X(ndt,I8x) = %(X(O,(I-n)Ax) + X(O,(I-m)Ax))
(I4+a)sx
B A SO
+ zco 3t (0,x")ex
(I-n)ax
We aiso have g
(I4n) Ay n-1
1
% 2 :
(I-n)bx j=0
z
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because the Z is o EACXI and if we mvltiply by

we get
ol Y S
Ax 2(:o At
I odd
which is
Cobt
X + 35
C At
) 1 X
Sr = (0,x"}dx’
. Ax ZC‘3 JC At at
o
-
but in this case
CoAt
T o=gs
So, as At,8x + 0 with ¥ = 1, then x‘I‘ > X(nAt,16%).

Moreover, the difference solution will yield the exact solution to the differ~

ential problem if le is defined properly when é = 1. It is desired that

c o
T T R
T2 !
- should approximate
¥ x+C 4t
R o
1 oX L 7 3
'2- CG :E' (0..\ )dx
1 x-C St

Yoo
N
A} 4
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1f, after defining X; = X(0,IAx), we define
© 4O Iax+C At
X”l = _ldé;. Ii_ - l_. X
1 - 2 C0 3t (0,x")dx’
IAx~C At
o
then
n~1 o o IAx-nC At
T fromzst P Xroneey L °
2 I-n+24+1 = 3C — (0,x") dx'
'zo C ot
4 IAx—COnAt

by the additivity of the integral. So the difference solution is exactly the
same at all points orf the grid. At this pcint, one can make an interesting
observation: DBy the proofs in the CFL paper, the difference solution converges

to the differential so0lution for ;flg_l. But the sclution to

ntl x? n-1 n

Ry "= &gy m R R
converges to
Co

X+ —>5t
1 X{0,x Co t) + X{0,x + Co ty{} + 1 F? (2 (G, x")dx’
FiaVss T 5 ’ -y EYad e s -
2 ;f E? 2C c ot

X - t

For F? < 1, this amounts to a "smoothing of the true sovlution. Th2 actual
equation is

. T | n 2_,). n a0 n \
K e sl - e (g2 (x1+1 2 RIS
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;
‘.

T term when ¥ < 1 is like adding its negative
\

2
Dropping the ;f -1 Ai XI

which we will denote

AAcX

2 ¢
x 1

where

If the solution to

- 2
ml o x® - xla 4-(?5 - 1) -+ XD

Xy 1+1 " %1 1-1

2
2 L0
+ A Ax XI for 0 < A <1 —'Zf

is a continuocus function of A; then the solution varies from the exact solution

at A = 0 to an evidently more and more smocthed solution as A grows. Thus,

the A 42 X
X

I
One might guess that as a function of A of the solution being converged to

would be like
1 Co Co
X(t,x)=-2- X{0,x - —— t] + X{0,x + t
Y1-2 vY1-)\

term seems to have a smoothing effect reminiscent of the viscosity.

c t
x +
Yi-a
/I=X
Y e Z 0,x")ax!
c ¢ oF
[o]
x-
o

since ;f = /1-x .
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e
~maaam,

2. HMethods of Lines ’

If, in the differential equation, )

9.?2.&_023_2’_(. v
at2 - o 9x2

we difference only in space, we weculd have :

: 2 ¥ - oy
: _a_}_cl(t) _ 2 11 (83 = 2K (8) + Xy (1)
{ 3t o AX2

Then we have a system of ordinary differential equations. Getting appreximate
g solutions to the partial differential equation by solving this system is called
the Method of Lines.

3. Method of Characteristics

.
£

e

In Section II in the discussion of SCTP-II, the method of characteristics

Y

Sassr s e

is discussed. For a discussion of a computer program to solve precblems by

the method of characteristics, see the report SC 47%6(RR), "‘SWAP--A Computer -
Program for Shock Wave Analysis." For a discussion of the relative utility

K : of the characteristic method and the fin dirff method, see "On the Numerical

Soiution of the Hydro Equations” by Fyfe, Eng, and Young (Siam Review, Vol 3,

No. 4, October 1961), in which the conclusion is: Method of characteristics

X 0, 1 A TR AR

is good for relatively simple problems. But for problems not so simple, the

R

method of finite differences is to be preferred. Moreover, some problems are

sty

—

too complicated to handle by the Method of Characteristics.

4. Analog Methods

i An electronic analog computer could be used to electrecnically solve the
g system by the method of lines, for example. Other analog techniques might be
. based upwn the analogy between shallow water behavior and gas dynamics

behavior. The use of wind tunnels is an Analog Method alsc.

T

E 5. Hybrid Computer Methods i
; ) A hybrid computer is a combination of analog and digital computers. For

;o a report on this, see AFWL-TR-65-165, "Development of an Autcmatic Device for _ s

. Solving Continuum Mechanics Problems."
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APPENDIX IIIX

ERROR FORMATS AND ERROR FUNCTIONS

The first thing to be determined when testing a code is at precisely what
time and place variables are computed by the code. Example: In PUFF, velocity

is computed at the zone boundary, but density, pressure, and internal energy
are zone center quantities.

Also, velocity is one half of the time step behind (timewise) the other
variables in PUFF. When gradients are steep and fast moving, ar in shocks,
errors of 5 to 10 percent can easily be made by not plotting the variables at
the correct time and place. Example: If one should plot PUFF's zone center
quantities at zone boundaries and plot PUFF's velocity as if it were at the

same time as the other variables, errors of 5 or 10 percent may be generated.

It is convenient to introduce the term 'primary variable.” By this, we
mean a variable that the code actually computes in its cycle advancing routine.
Example: In PUFF, the primary variables are X, the zone boundary position;

D, the density; &, the stress or pressure; E, the internal energy; V, the
velocity. Now, from these we can compute other wariables such as momentum,

kinetic energy, total emergy, etc.

Those nonprimary variables which may be computed from the primary variables
will be calleé secondary variables.

We wish to develop an Yerror function." This error function is to measure
the “distance" between the exact solution and the code's solution. That is,
it is to give us a number or numbers indicative of the "closeness" of the

coge's soclution to the exact solution.
This question arises: What should the error function depend on?

In answering this question, the following point should be noted: If we
check the error, for example, in momentum in PUFF, we must make an interpcla-
tion decision because momentum is the density-velocity product and PUFF
computes these primary variables at different places. For this reason, we
have answered the error function in this way: The error function should

depend only on primary variables at the points in space and time where they
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are computed; that is, only at zone bouncaries for velocities and only at zone
centers for density, internal energy, and pressure; also, only at those times .

these variables are computed. This eliminates interpolation decisions.

Now actually, PUFF's value at these points is supposed to be the average
over the half zone to either side of the point (be it zone boundary or zone
center). But the comparisons have all been made with the value of the exact
solution at that point. Perhaps it would dave been .rore fair to PUFF to take
the exact solution and average it over the region composed of the half zone
to the left and the half zone to the right and then compare this average with
PUFF, But then the difficulty arises that PUFF may have made an error in its
zone boundary positions. So, do we average over the region PUFF is averaging
over or over the region the exact solution indicates we should average over?

We have answered the error function question by providing several numbers
and graphs. We have provided the maximum error rumbers, sum square error
numbers, graphs indicating the characteristic and outstanding distortions, “
etc. We normalized the maximum error number and the sum square error number
by dividing by the maximum absolute value of the variable taken on in the -
exact solution. The "point function" variables in PUFF which we check are
the primary variables of PUFF, {.e., D, E, U, S, X. The other variables
checked were the "set or interval functions"” which were total energy, kinetic

energy, and potential energy.

We now give precise definitions of the sum square error numbers and the
maximum error numbers. Let ?i be the value of PUFF or whatever code is bezing
tested. Leét fI be the exact solutions value at that place. Let N be the

number of places or zones which are involved.

N 2
2. (51 - fI)
_ I=1 .
su? square error =1J 5 1?;§N |f1|

In PUFF, N is the number of active zones (JSTAR+l in FUFF).

1m§xN |§} - fIi

<<

maximum error & —— 'f I * sgn (?l - fImax)
L

max Imax
1<I<N
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where 1 is such that
max

~ ~

froax = fimax| = 22% If - f
m 1<I<N

(It is possible that there could be more than one Imax' If so, the prxeogram

chooses the larger one.)
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APPENDIX IV

SUMMARY OF PUFF TEST RESULTS ?

PUFF's errors might be categorized into overrounds, underrounds, overshoots,
undershoots, hot-thin spikes, and cold-thick spikes. These may be further
broken down into compression overrounds, compression underrounds, rarefaction

overrounds, and rarefaction underrounds. For graphical description of these

distortions, see figurz A-r. The hot-thin spikes occur where there are shocks
in the initial flow. The cold-thick spikes occur at shock collisions or shock
overtakes.
5, R,
¢
Compression//’ EBYefaction
underround Compression Rarefaction underround

overround overround~
L

,,4:-Rarefaction overshoot
5_) N

YR .

¥~Rarefaction undershoot

Figure A~4. PUFF Errors
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We will now list some examples of these errors.
Compression overround in P, v, p, e in SCTP-1, SCTP-III
Compression underround in ¥, v, 5, @ in SCTP-I
Rzrefaction overround in the pressure SCTP-V-A
Rarefaction snderrownd in P, v, p, e in SCTP-II
Rarefaction overshoot in the velocity in SCIP-V-C
Rarefaction undershoot in P, v, p, e in SCTP-I1I-A
Hot-thin spike in SCTP-I, SCTP-VI, SCIP-VII
Cold-thick spike in SCTP-VI, SCIP-VII

The pressure and velocity are tne best behaved variables in PUFF while

the density and internal energy are the worst behaved.
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A, A~ ‘

accelerating piston problems,
adiabatic. £-=I

analog methods, 8~I1
artificial viscosity, I

€, ECTP--I

CE, SCTP~I

CFL nuwber, A~II

Ci, SCTP~1

X, SCTP-1

C¢’ ASTI

C,, SCTE-I

c, characteristic, SCTP-II
;;;ractéristics, SCIP—II—
characteristics method, A~IZ
codes X

cowpression wave, SC??«I&I
contact §£3c§n£inuity, §CIP~V
contiheity eéﬁaéibn, SCIp-1
continusn solution, A~I

conservaticn laws, &~

"BELT&, zee AX, Ar

aX % space mesh increment

W

ac time mesh increwent

discrete solution, I

N o e e R S S 2 Sy Nt WS e

T R e A N W e AT 3 e R N R O AR AT

INDEX

SCTP-III, SCIP-IV
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INDEX {cont'd}

E = spzeific total ercrgy, A-1

tn

e ¥ gpecific iniermal <¢nergy, STTZ-I
effective CFL numbter, SCIP-I

EOS © equation of state relation, SCIP-%
enargy baiznee squation, SCTP-1
energy partiticm, $CIP-IX

equation of continuiiy, S£IP-I
equations of hyérodynamics, A~1
eguation of motion, SCTP-%

eguation of state, 5CZP-Z

escape speed, SCIP-II

Eulerian feormulation, A-1

. 'nite differerce methods, A-I1
first law of rhenfodynanicr, A~I
gas constant, SCTP-~X

gamma, see y and T

v, SCTp-I

2+ chargeteristie, SCIP-IX
ﬁ;aentrcpic, A~

hybrid betheds, &~z

hrdrocode, 1 -
igeal gas, SCTZ-%

isentrropic, A~

Lagrangian squsticny, a-1

ragrangiae formulatienm, A-%

mecthed of characterickics, a-Ii

Sowegt ems ety s e mead
FAL] “a .

e e

.
14N




ATWILATR~67-127
- IMDEX (cont'd)
sechod 9f linas, A-II 132
.Neq‘:tbﬂ;s second law, SCTIP-I 13 .
WL = Nei‘éon's ;second law relation, SCIP-I 13
cfverrq', , A-1V 136
ovver,_shoot;‘, A-T¥ . 136
¥ ¥ pressure - —
pipe probifn, SCTO-I 10
piston-ix-pipe sroblem, SCTIP-I 10
P,» SGIP-1 , 11
?_, SCIP-1 11
SUFF - 3 i
G = symbol for artificial wiscosity f{a PUFF — .
R : ',;ééicp?s':ant, SéTP—i ‘ 14
P;ajxnk‘:;ue%ﬁazmgog_ relation, SCIP-1 : - - 15
-aseferion, SCTP-TI, SCIR-IV 27
raz‘efgaﬁoe relation, - SCiP-V | 76
24 £ Rsnkine-Hugonlot relation, SCTP-I 15
tho; see P ' —
23 daﬁsi*y o ' —
5-2; SG?E 4 -11
- ;f,' sorpei i
Tiensen srevarfaant, SCIP-II 29
Atesam: proslics, SCTR-Y 69 .
& = sntropy, A-I 109
;s;g?,.; « : 10 ’
- sesmar 27
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INDEX (cont'd)
SCTP-I11
SCTP~IV
SCTP.-V
SCTP~VI
SCIP-ViI -

shock, 5CTP-I

.shorck relation, SCIP-V

shock speed formulas, SCIP-1
shock tramsition reginp, SCTP~I
sheck mibe problem, SCIP-¥

shock width, SCTP-I

simple wave, SCTP~11
simple wave formslas, SCIP-II
slab geometry, T1

steady profile, SSYP-~I

LN

85{P) = shock cpved as a Sunction of pressyre veiscion, SCIP-I

5S(V) = shock Speed as a funcilon of specific volume; SCIP-I
8580, = sﬁock-fggcd a8 a function of £luid velocity, SCTP-I

T & remperature
£ £ time

U T symbol foxr veloueity iy PUFP

underround, A-IV
undershoot, A=V
urifity, I

¥ = specific volume
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INDEX (cont'd)
Page .

v 2 velocity 11
vacuum, SCTP-II, SCTP-IV 30 .
vV, SCIP-I 11
v , SCTP-I1 11
v_, SCTP-I 11

P
V_, SCIP-I 11
v, SCIP-I 12
v_, SCTP-I ' 12

s
X =z Eulerian position 105

x Z Lagrangian label, A-I ) 105

ZM = symbol for zone mass in PUFF o .
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